Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Phys Rev Lett ; 131(12): 123801, 2023 Sep 22.
Artigo em Inglês | MEDLINE | ID: mdl-37802952

RESUMO

Nonlinearity-induced asymmetric transport (AT) can be utilized for on-chip implementation of nonreciprocal devices that do not require odd-vector biasing. This scheme, however, is subject to a fundamental bound dictating that the maximum transmittance asymmetry is inversely proportional to the asymmetry intensity range (AIR) over which AT occurs. Contrary to the conventional wisdom, we show that the implementation of losses can lead to an increase of the AIR without deteriorating the AT. We develop a general theory that provides a new upper bound for AT in nonlinear complex systems and highlights the importance of their structural complexity and of losses. Our predictions are confirmed numerically and experimentally using a microwave complex network of coaxial cables.

2.
Microbiol Spectr ; 11(3): e0076723, 2023 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-37067462

RESUMO

Several variants of the plasmid-carried tigecycline resistance gene cluster, tmexCD-toprJ, have been identified. This study characterized another novel variant, tmexC6D6-toprJ1b, located on the chromosome of environmental-origin Pseudomonas mendocina. TMexC6D6-TOprJ1 mediates resistance to multiple drugs, including tigecycline. The promoter activity of tmexC6D6-toprJ1b and negative transcriptional repression by the upstream regulator tnfxB6 are crucial for the expression of tmexC6D6-toprJ1b. tmexC6D6-toprJ1b was found in the plasmids or chromosomes of different Pseudomonas species from six countries. Two genetic backgrounds, class 1 integrons and int-carrying integrase units, were found adjacent to the tmexC6D6-toprJ1b gene cluster and might mediate the transfer of this novel efflux pump gene cluster in Pseudomonas. Further phylogenetic analysis revealed Pseudomonas as the major reservoir of tmexCD-toprJ variants, warranting closer monitoring in the future. IMPORTANCE Tigecycline is one of the treatment options for serious infections caused by multidrug-resistant bacteria, and tigecycline resistance has gained extensive attention. The emergence of a transferable tigecycline resistance efflux pump gene cluster, tmexCD-toprJ, severely challenged the efficiency of tigecycline. In this study, we identified another novel tmexCD-toprJ variant, tmexC6D6-toprJ1b, which could confer resistance to multiple classes of antibiotics, including tigecycline. Although tmexC6D6-toprJ1b was found only in Pseudomonas species, tmexC6D6-toprJ1b might spread to Enterobacteriaceae hosts via mobile genetic elements resembling those of other tmexCD-toprJ variants, compromising the therapeutic strategies. Meanwhile, novel transferable tmexCD-toprJ variants are constantly emerging and mostly exist in Pseudomonas spp., indicating Pseudomonas as the important hidden reservoir and origin of tmexCD-toprJ variants. Continuous monitoring and investigations of tmexCD-toprJ are urgent to control its spread.


Assuntos
Antibacterianos , Pseudomonas , Tigeciclina/farmacologia , Pseudomonas/genética , Pseudomonas/metabolismo , Filogenia , Antibacterianos/farmacologia , Antibacterianos/metabolismo , Plasmídeos , Testes de Sensibilidade Microbiana
3.
Microbiol Spectr ; 10(6): e0346822, 2022 12 21.
Artigo em Inglês | MEDLINE | ID: mdl-36354336

RESUMO

The appearance and prevalence of novel plasmid-encoded tigecycline resistance efflux pump gene clusters tmexC1D1-toprJ1 and tmexC2D2-toprJ2 in Enterobacteriaceae have raised a threat to public health. Here, another tigecycline resistance gene cluster, tmexC2D2.2-toprJ2, was identified in two Aeromonas isolates recovered from fish meat and vegetables. Cloning confirmed the expression of tmexC2D2.2-toprJ2 mediated the resistance to tigecycline and decreased susceptibility to tetracyclines and cephalosporins in both Escherichia coli and Aeromonas. In an Aeromonas veronii strain, four copies of tmexC2D2.2-toprJ2 were located on the chromosome. Further analysis revealed that tmexC2D2.2-toprJ2 has been detected in the chromosomes of A. veronii, Aeromonas hydrophila, and Aeromonas caviae with one to four copies due to the insertion of a potential integrative transferable unit. The occurrence of multiple copies of chromosomal tmexC2D2.2-toprJ2 may act as a sink for this tigecycline resistance gene cluster, which requires continuous monitoring. IMPORTANCE Tigecycline is regarded as one of the few effective drugs against multidrug-resistant bacterial infection. However, mobile tigecycline resistance efflux pump gene clusters such as tmexC1D1-toprJ1 and its variants have been identified in both animal- and human-origin Enterobacteriaceae. In this study, we first found another efflux pump gene cluster, tmexC2D2.2-toprJ2, in the Aeromonas chromosome. This gene cluster could mediate tigecycline resistance and decrease susceptibility to tetracyclines and cephalosporins in the Aeromonas host strain. Meanwhile, tmexC2D2.2-toprJ2 was detected with multiple copies in Aeromonas spp. This multidrug resistance efflux pump gene cluster with multiple copy numbers might stably exist in Aeromonas and serve as a reservoir for tmexCD2-toprJ2, facilitating its persistent presence and spread.


Assuntos
Aeromonas , Animais , Humanos , Tigeciclina/farmacologia , Aeromonas/genética , Farmacorresistência Bacteriana/genética , Antibacterianos/farmacologia , Antibacterianos/metabolismo , Tetraciclinas/farmacologia , Plasmídeos/genética , Escherichia coli/genética , Enterobacteriaceae/genética , Enterobacteriaceae/metabolismo , Cromossomos , Família Multigênica , Cefalosporinas/farmacologia , Testes de Sensibilidade Microbiana
4.
Int J Biol Macromol ; 209(Pt A): 680-691, 2022 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-35413323

RESUMO

Functionalized two-dimensional Ti3C2Tx (TN-EHL) was prepared as an effective adsorbent for removal of methylene blue dye (MB) and copper ions (Cu2+). Enzymatic hydrolysis lignin (EHL), a reproducible natural resource, was used to functionalize the Ti3C2Tx nanosheets. EHL can not only introduce active functional groups into TN-EHL but also prevent the oxidation of Ti3C2Tx, thus promoting the adsorption performance of TN-EHL. The maximum adsorption capacities of TN-EHL50 (in which the EHL content is 50 wt%) for MB and Cu2+ were 293.7 mg g-1 and 49.96 mg g-1, respectively. The higher correlation coefficients (R2) of MB (0.9996) and Cu2+ (0.9995) indicating that their adsorption processes can be described by the pseudo-second-order kinetic model. The MB adsorption data fit the Freundlich isotherm with R2 of 0.9953, whereas the Cu2+ ions adsorption data fit the Langmuir isotherm with R2 of 0.9998. The thermodynamic analysis indicates that the adsorption process of MB and Cu2+ on TN-EHL50 is spontaneous and endothermic. Significantly, the Cu2+ ions were reduced to Cu2O and CuO particles during the adsorption process. Therefore, TN-EHL has a great potential as an environmentally friendly adsorbent for MB removal and recovery of Cu2+ ions from wastewater.


Assuntos
Poluentes Químicos da Água , Purificação da Água , Adsorção , Cobre , Hidrólise , Íons , Cinética , Lignina , Azul de Metileno , Titânio , Poluentes Químicos da Água/análise
5.
Nano Lett ; 21(24): 10423-10430, 2021 12 22.
Artigo em Inglês | MEDLINE | ID: mdl-34846905

RESUMO

Experiments on spin transport through a chiral molecule demonstrated the attainment of significant spin polarization, demanding a theoretical explanation. We report the emergence of spin Fano resonances as a mechanism in the chiral-induced spin-selectivity (CISS) effect associated with transport through a chiral polyacetylene molecule. Initializing electrons through optical excitation, we derive the Fano resonance formula for the spin polarization. Computations reveal that quasidegeneracy is common in this complex molecular system. A remarkable phenomenon is the generation of pronounced spin Fano resonances due to the contributions of two near-degeneracy states. We also find that the Fano resonance width increases linearly with the coupling strength between the molecule and the lead. Our findings provide another mechanism to explain the experimental observations and lead to new insights into the role of the CISS effect in complex molecules from the perspective of transport and spin polarization resonance, paving the way for chiral molecule-based spintronics applications.


Assuntos
Elétrons , Vibração , Estereoisomerismo
6.
J Antimicrob Chemother ; 76(12): 3159-3167, 2021 11 12.
Artigo em Inglês | MEDLINE | ID: mdl-34508611

RESUMO

OBJECTIVES: To characterize a novel MDR efflux pump gene cluster tnfxB3-tmexCD3-toprJ1b carried by Proteus spp. and Pseudomonas aeruginosa strains from chickens. METHODS: Antimicrobial susceptibility testing, conjugation and WGS were performed to characterize tnfxB3-tmexCD3-toprJ1b-positive isolates. Cloning and reverse transcription-quantitative PCR were performed to investigate the function of tnfxB3-tmexCD3-toprJ1b. RESULTS: The WGS data revealed that a novel efflux pump gene cluster, tnfxB3-tmexCD3-toprJ1b, was identified on the chromosome of the Proteus cibarius strain SDQ8C180-2T, where an SXT/R391-family integrative and conjugative element (ICE) was found to co-carry tet(X6) and tnfxB3-tmexCD3-toprJ1b. Further retrospective analysis found two other tnfxB3-tmexCD3-toprJ1b variants in a Proteus mirabilis isolate and a P. aeruginosa isolate, respectively. tmexCD3-toprJ1b and its variants increased the MICs of tigecycline (8-fold) and other antibiotics (2-8-fold) in Escherichia coli host strains. The TNfxB3 protein down-regulated the expression of the tmexCD3-toprJ1b operon. Moreover, genetic-context analyses showed that tnfxB3-tmexCD3-toprJ1b together with adjacent integrase genes appeared to compose a transferable module 'int1-like+int2-like+hp1+hp2+ISCfr1+tnfxB3-tmexCD3-toprJ1b', which was inserted into the umuC-like gene of this ICE. Further analysis of the tnfxB3-tmexCD3-toprJ1b-harbouring sequences deposited in GenBank revealed similar transferable modules inserted into umuC-like genes in plasmids or chromosomes of Klebsiella pneumoniae, Pseudomonas spp. and Aeromonas spp., implying that these modules could be transferred across different bacterial species. CONCLUSIONS: To the best of our knowledge, this is the first identification of a novel tigecycline gene cluster, tmexCD3-toprJ1b, which co-exists with tet(X6) within an ICE. More attention should be paid to the co-transfer of these two tigecycline resistance determinants via an ICE to other Gram-negative bacteria.


Assuntos
Galinhas , Pseudomonas aeruginosa , Animais , Conjugação Genética , Família Multigênica , Proteus , Pseudomonas aeruginosa/genética , Estudos Retrospectivos , Tigeciclina
7.
Artigo em Inglês | MEDLINE | ID: mdl-33495220

RESUMO

We recently identified a novel plasmid-mediated resistance-nodulation-division (RND)-type efflux pump gene cluster, tmexCD1-toprJ1, in Klebsiella pneumoniae that conferred resistance to multiple antimicrobials, including tigecycline. While homologs of tmexCD1-toprJ1 were found encoded in many other bacterial species in GenBank, their functions and transfer mechanisms remain unknown. This study identified another mobile gene cluster, tmexCD2-toprJ2, co-occurring on both a plasmid (pHNNC189-2) and the chromosome of a clinical Raoultella ornithinolytica isolate, strain NC189, producing KPC-2, NDM-1, and RmtC. tmexCD2-toprJ2 shares high similarity at the nucleotide level with tmexCD1-toprJ1, with 98.02%, 96.75%, and 99.93% identities to tmexC1, tmexD1, and toprJ1, respectively. Phylogenetic analysis revealed that tmexCD2-toprJ2 may have originated from the chromosome of a Pseudomonas species. The expression of tmexCD2-toprJ2 in an Escherichia coli strain resulted in an 8-fold increase in the tigecycline MIC and decreased susceptibility to other antimicrobials. Genetic context analyses demonstrated that tmexCD2-toprJ2, together with the adjacent hypothetical site-specific integrase genes, was possibly captured and mobilized by a XerD-like tyrosine recombinase system, forming a putative transposition unit (xerD-like-int3-like-thf2-ybjD-umuD-ΔumuC1-int1-like-int2-like-hp1-hp2-tnfxB2-ISBvi2-tmexCD2-toprJ2-ΔumuC1), which was inserted into umuC-like genes in both the NC189 plasmid pHNNC189-2 and the chromosome. Since tmexCD1-toprJ1 and tmexCD2-toprJ2 could confer multidrug resistance, the spread of these gene clusters, associated with the new recombinase system, calls for more attention.


Assuntos
Antibacterianos , Família Multigênica , Antibacterianos/farmacologia , Enterobacteriaceae , Família Multigênica/genética , Filogenia , Tigeciclina/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...