Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 102
Filtrar
1.
Biomed Eng Online ; 23(1): 53, 2024 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-38858706

RESUMO

BACKGROUND: Metastasis is one of the main factors leading to the high mortality rate of gastric cancer. The current monitoring methods are not able to accurately monitor gastric cancer metastasis. METHODS: In this paper, we constructed a new type of hollow Mn 3 O 4 nanocomposites, Mn 3 O 4 @HMSN-Cy7.5-FA, which had a size distribution of approximately 100 nm and showed good stability in different liquid environments. The in vitro magnetic resonance imaging (MRI) results show that the nanocomposite has good response effects to the acidic microenvironment of tumors. The acidic environment can significantly enhance the contrast of T 1 -weighted MRI. The cellular uptake and endocytosis results show that the nanocomposite has good targeting capabilities and exhibits good biosafety, both in vivo and in vitro. In a gastric cancer nude mouse orthotopic metastatic tumor model, with bioluminescence imaging's tumor location information, we realized in vivo MRI/fluorescence imaging (FLI) guided precise monitoring of the gastric cancer orthotopic and metastatic tumors with this nanocomposite. RESULTS: This report demonstrates that Mn 3 O 4 @HMSN-Cy7.5-FA nanocomposites is a promising nano-diagnostic platform for the precision diagnosis and therapy of gastric cancer metastasis in the future. CONCLUSIONS: In vivo MRI/FLI imaging results show that the nanocomposites can achieve accurate monitoring of gastric cancer tumors in situ and metastases. BLI's tumor location information further supports the good accuracy of MRI/FLI dual-modality imaging. The above results show that the MHCF NPs can serve as a good nano-diagnostic platform for precise in vivo monitoring of tumor metastasis. This nanocomposite provides more possibilities for the diagnosis and therapy of gastric cancer metastases.


Assuntos
Ácido Fólico , Imageamento por Ressonância Magnética , Nanocompostos , Metástase Neoplásica , Neoplasias Gástricas , Neoplasias Gástricas/diagnóstico por imagem , Neoplasias Gástricas/patologia , Animais , Nanocompostos/química , Camundongos , Linhagem Celular Tumoral , Humanos , Ácido Fólico/química , Compostos de Manganês/química , Imagem Óptica , Camundongos Nus , Óxidos
2.
Enzyme Microb Technol ; 179: 110467, 2024 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-38852284

RESUMO

ε-Poly-l-lysine (ε-PL), a natural food preservative with various advantages, is primarily produced by Streptomyces. It has attracted considerable attentions for the outstanding antibacterial activity, safety, heat stability, water solubility and other remarkable properties. In this study, a food-grade recombinant Bacillus subtilis was constructed for the biocatalysis of ε-PL. Firstly, the d-alanine racemase gene (alrA) was deleted from the genome of Bacillus subtilis 168 to construct an auxotrophic B. subtilis 168 (alrA-). Based on the shuttle plasmid pMA5, a food-grade plasmid pMA5a was constructed by replacing the genes of kanamycin resistance (Kanr) and ampicillin resistance (Ampr) with alrA and the gene encoding α-peptide of ß-galactosidase (lacZα), respectively. Subsequently, codon-optimized ε-PL synthase gene (pls) and P-pls were ligated into pMA5a and transformed in E. coli DH5α and expressed in B. subtilis 168 (alrA-). Finally, the whole-cell biocatalysis conditions for ε-PL production by B. subtilis 168 (alrA-)/pMA5a-pls were optimized, and the optimal conditions were 30°C, pH 4, l-lysine concentration of 0.6 g/L, bacterial concentration of 15 % (w/v) and a catalytic time of 7 h. The ε-PL production reached a maximum of 0.33 ± 0.03 g/L. The product was verified to be ε-PL by HPLC and tricine-SDS-PAGE. The information obtained in this study shows critical reference for the food-grade heterologous expression of ε-PL.

3.
Sci Total Environ ; 934: 173314, 2024 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-38761937

RESUMO

As emerging environmental pollutants, microplastics (MPs) and nanoplastics (NPs) pose a serious threat to human health. Owing to the lack of feasible and reliable analytical methods, the separation and identification of MPs and NPs of different sizes remains a challenge. In this study, a hyphenated method involving filtration and surface-enhanced Raman spectroscopy (SERS) for the separation and identification of MPs and NPs is reported. This method not only avoids the loss of MPs and NPs during the transfer process but also provides an excellent SERS substrate. The SERS substrate was fabricated by electrochemically depositing silver particles onto the reduced graphene oxide layer coated on stainless steel mesh. Results show that polystyrene (PS) MPs and NPs are efficiently separated on the SERS substrate via vacuum filtration, resulting in high retention rates (74.26 % ± 1.58 % for 100 nm, 81.06 % ± 1.49 % for 500 nm, and 97.73 % ±0.11 % for 5 µm) and low limit of detection (LOD). The LOD values of 100 nm, 500 nm, and 5 µm PS are 8.89 × 10-5, 3.39 × 10-5, and 1.57 × 10-4 µg/mL, respectively. More importantly, a linear relationship for uniform quantification of 100 nm, 500 nm, 3 µm and 5 µm PS was established, and the relationship is Y = 225.61 lgX + 1076.36 with R2 = 0.980. The method was validated for the quantitative analysis of a mixture of 100 nm, 500 nm PS NPs, 3 µm and 5 µm PS MPs in a ratio of 1:1:1:1, which successfully approaches the evaluation of evaluated PS NPs in the range of 10-4-10 µg/mL with an LOD value of approximately 7.82 × 10-5 µg/mL. Moreover, this method successfully detected (3.87 ± 0.06) × 10-5 µg MPs and NPs per gram of oyster tissue.


Assuntos
Microplásticos , Poliestirenos , Análise Espectral Raman , Poliestirenos/química , Microplásticos/análise , Análise Espectral Raman/métodos , Monitoramento Ambiental/métodos , Limite de Detecção , Prata/análise , Prata/química , Grafite/química , Poluentes Químicos da Água/análise
4.
J Periodontal Res ; 59(4): 657-668, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38718089

RESUMO

AIMS: The microbial profiles of peri-implantitis and periodontitis (PT) are inconclusive. The controversies mainly arise from the differences in sampling sites, targeted gene fragment, and microbiome analysis techniques. The objective of this study was to explore the microbiomes of peri-implantitis (PI), control implants (CI), PT and control teeth (CT), and the microbial change of PI after nonsurgical treatment (PIAT). METHODS: Twenty-two patients diagnosed with both PT and peri-implantitis were recruited. Clinical periodontal parameters and radiographic bone levels were recorded. In each patient, the subgingival and submucosal plaque samples were collected from sites with PI, CI, PT, CT, and PIAT. Microbiome diversity was analyzed by high-throughput amplicon sequencing using full-length of 16S rRNA gene by next generation sequencing. RESULTS: The 16S rRNA gene sequencing analysis revealed 512 OTUs in oral microbiome and 377 OTUs reached strain levels. The PI and PT groups possessed their own unique core microbiome. Treponema denticola was predominant in PI with probing depth of 8-10 mm. Interestingly, Thermovirga lienii DSM 17291 and Dialister invisus DSM 15470 were found to associate with PI. Nonsurgical treatment for peri-implantitis did not significantly alter the microbiome, except Rothia aeria. CONCLUSION: Our study suggests Treponemas species may play a pivotal role in peri-implantitis. Nonsurgical treatment did not exert a major influence on the peri-implantitis microbiome in short-term follow-up. PT and peri-implantitis possess the unique microbiome profiles, and different therapeutic strategies may be suggested in the future.


Assuntos
Microbiota , Peri-Implantite , Periodontite , RNA Ribossômico 16S , Humanos , Peri-Implantite/microbiologia , Peri-Implantite/terapia , RNA Ribossômico 16S/análise , Masculino , Feminino , Pessoa de Meia-Idade , Periodontite/microbiologia , Periodontite/terapia , Sequenciamento de Nucleotídeos em Larga Escala , Idoso , Adulto
5.
J Sci Food Agric ; 2024 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-38651728

RESUMO

BACKGROUND: The present study investigated the structure, functional and physicochemical properties of lotus seed protein (LSP) under different pH environments. The structures of LSP were characterized by sodium dodecyl sulfate-polyacrylamide gel electrophoresis, Fourier transform infrared spectroscopy (FTIR), zeta potential, particle size distributions, free sulfhydryl and rheological properties. The functional and physicochemical properties of LSP were characterized by color, foaming property, emulsification property, solubility, oil holding capacity, water holding capacity, differential scanning calorimetry analysis and surface hydrophobicity. RESULTS: LSP was mainly composed of eight subunits (18, 25, 31, 47, 51, 56, 65 and 151 kDa), in which the richest band was 25 kDa. FTIR results showed that LSP had high total contents of α-helix and ß-sheet (44.81-46.85%) in acidic environments. Meanwhile, there was more ß-structure and random structure in neutral and alkaline environments (pH 7.0 and 9.0). At pH 5.0, LSP had large particle size (1576.98 nm), high emulsion stability index (91.43 min), foaming stability (75.69%) and water holding capacity (2.21 g g-1), but low solubility (35.98%), free sulfhydryl content (1.95 µmol g-1) and surface hydrophobicity (780). DSC analysis showed the denaturation temperatures (82.23 °C) of LSP at pH 5.0 was higher than those (80.10, 80.52 and 71.82 °C) at pH 3.0, 7.0 and 9.0. The analysis of rheological properties showed that LSP gel had high stability and great strength in an alkaline environment. CONCLUSION: The findings of the present study are anticipated to serve as a valuable reference for the implementation of LSP in the food industry. © 2024 Society of Chemical Industry.

6.
Microsyst Nanoeng ; 10: 24, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38344149

RESUMO

Stress tolerance plays a vital role in ensuring the effectiveness of piezoresistive sensing films used in flexible pressure sensors. However, existing methods for enhancing stress tolerance employ dome-shaped, wrinkle-shaped, and pyramidal-shaped microstructures in intricate molding and demolding processes, which introduce significant fabrication challenges and limit the sensing performance. To address these shortcomings, this paper presents periodic microslits in a sensing film made of multiwalled carbon nanotubes and polydimethylsiloxane to realize ultrahigh stress tolerance with a theoretical maximum of 2.477 MPa and a sensitivity of 18.092 kPa-1. The periodic microslits permit extensive deformation under high pressure (e.g., 400 kPa) to widen the detection range. Moreover, the periodic microslits also enhance the sensitivity based on simultaneously exhibiting multiple synapses within the sensing interface and between the periodic sensing cells. The proposed solution is verified by experiments using sensors based on the microslit strategy for wind direction detection, robot movement sensing, and human health monitoring. In these experiments, vehicle load detection is achieved for ultrahigh pressure sensing under an ultrahigh pressure of over 400 kPa and a ratio of the contact area to the total area of 32.74%. The results indicate that the proposed microslit strategy can achieve ultrahigh stress tolerance while simplifying the fabrication complexity of preparing microstructure sensing films.

8.
J Dent Sci ; 19(1): 377-386, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38303835

RESUMO

Background/purpose: External cervical resorption (ECR) is an aggressive form of root resorption, which etiology is unclear and its prognosis remains unpredictable. The purpose of this study was to investigate the prognosis and potential prognostic factors of ECR-affected teeth after surgical intervention for external repair with/without root canal treatment. Materials and methods: Treated ECR cases from 2009 to 2019 were collected retrospectively. The survival of the teeth and the status of root resorption were assessed during the follow-up period. Potential prognostic factors were analyzed with log-rank test and Kaplan-Meier statistics. Results: A total of 42 treated ECR-affected teeth were enrolled. The two-year survival rate was 71.20% [54.16%, 93.59%]. Persistent root resorption was the main complication after treatment. Patients with multiple ECR-affected teeth had greater recurrent potential than patients with solitary ECR-affected teeth. Prolonged calcium hydroxide dressing may contribute to a more favorable clinical outcome. Gender, age, tooth position and the need for root canal treatment did not show statistically significant effect on the prognosis. Conclusion: The current surgical method was able to arrest ECR in most cases. However, the case type (the number of ECR-affected teeth per patient) could highly affect the prognosis of the teeth. Clinicians should consider long-term calcium hydroxide dressing in case of pulp involvement to achieve better results.

9.
Nano Lett ; 24(6): 2003-2010, 2024 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-38306120

RESUMO

Heat-assisted magnetic anisotropy engineering has been successfully used in selective magnetic writing and microwave amplification due to a large interfacial thermal resistance between the MgO barrier and the adjacent ferromagnetic layers. However, in spin-orbit torque devices, the writing current does not flow through the tunnel barrier, resulting in a negligible heating effect due to efficient heat dissipation. Here, we report a dramatically reduced switching current density of ∼2.59 MA/cm2 in flexible spin-orbit torque heterostructures, indicating a 98% decrease in writing energy consumption compared with that on a silicon substrate. The reduced driving current density is enabled by the dramatically decreased magnetic anisotropy due to Joule dissipation and the lower thermal conductivity of the flexible substrate. The large magnetic anisotropy could be fully recovered after the impulse, indicating retained high stability. These results pave the way for flexible spintronics with the otherwise incompatible advantages of low power consumption and high stability.

10.
J Sci Food Agric ; 104(6): 3329-3340, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38082555

RESUMO

BACKGROUND: Zanthoxylum seed, as a low-cost and easily accessible plant protein resource, has good potential in the food industry. But protein and its hydrolysates from Zanthoxylum seed are underutilized due to the dearth of studies on them. This study aimed to investigate the structure and physicochemical and biological activities of Zanthoxylum seed protein (ZSP) hydrolysates prepared using Protamex®, Alcalase®, Neutrase®, trypsin, or pepsin. RESULTS: Hydrolysis using each of the five enzymes diminished average particle size and molecular weight of ZSP but increased random coil content. ZSP hydrolysate prepared using pepsin had the highest degree of hydrolysis (24.07%) and the smallest molecular weight (<13 kDa) and average particle size (129.80 nm) with the highest solubility (98.9%). In contrast, ZSP hydrolysate prepared using Alcalase had the highest surface hydrophobicity and foaming capacity (88.89%), as well as the lowest foam stability (45.00%). Moreover, ZSP hydrolysate prepared using Alcalase exhibited the best hydroxyl-radical scavenging (half maximal inhibitory concentration (IC50 ) 1.94 mg mL-1 ) and ferrous-ion chelating (IC50 0.61 mg mL-1 ) activities. Additionally, ZSP hydrolysate prepared using pepsin displayed the highest angiotensin-converting enzyme inhibition activity (IC50 0.54 mg mL-1 ). CONCLUSION: These data showed that enzyme hydrolysis improved the physicochemical properties of ZSP, and enzymatic hydrolysates of ZSP exhibited significant biological activity. These results provided validation for application of ZSP enzymatic hydrolysates as antioxidants and antihypertensive agents in the food or medicinal industries. © 2023 Society of Chemical Industry.


Assuntos
Inibidores da Enzima Conversora de Angiotensina , Zanthoxylum , Inibidores da Enzima Conversora de Angiotensina/química , Hidrolisados de Proteína/química , Pepsina A/metabolismo , Hidrólise , Antioxidantes/farmacologia , Antioxidantes/química , Sementes/metabolismo , Subtilisinas/química
11.
Dent Mater ; 40(3): 407-419, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38123384

RESUMO

OBJECTIVES: Given the global prevalence of dental caries, impacting 2.5 billion individuals, the development of sophisticated prevention filling materials is crucial. Streptococcus mutans, the principal caries-causing strain, produces acids that demineralize teeth and initiate dental caries. To address this issue, we aimed to develop a synergistic resin-based composite for enhancing caries control. METHODS: The synergistic resin composite incorporates fluorinated kaolinite and silanized Al2O3 nanoparticle fillers into an epigallocatechin gallate (EGCG) immobilized urethane-modified epoxy acrylate (U-EA) resin matrix, referred to the as-prepared resin composite. The EGCG-modified TPGDA/U-EA network was synthesized by preparing methacrylate-functionalized isocyanate (HI), reacting it with EGCG to form HI-EGCG, and then incorporating HI-EGCG into the TPGDA/U-EA matrix. The lamellar space within the kaolinite layer was expanded through the intercalation of acrylamide into kaolinite, enhancing its capability to adsorb and release fluoride ions (F-). The layered structure of acrylamide/ kaolinite in the U-EA resin composite acts as a F- reservoir. RESULTS: The physico-mechanical properties of the as-prepared resin composites are comparable to those of commercial products, exhibiting lower polymerization shrinkage, substantial F- release and recharge and favorable diametral tensile strength. The immobilized EGCG in the composite exhibits potent antimicrobial properties, effectively reducing the biofilm biomass. Furthermore, the synergistic effect of EGCG and fluorinated kaolinite efficiently counteracts acid-induced hydroxyapatite dissolution, thereby suppressing demineralization and promoting enamel remineralization. SIGNIFICANCE: Our innovative EGCG and fluoride synergistic composite provides enhanced antimicrobial properties, durable anti-demineralization, and tooth remineralization effects, positioning it as a promising solution for effective caries control and long-term dental maintenance.


Assuntos
Resinas Acrílicas , Anti-Infecciosos , Catequina/análogos & derivados , Cárie Dentária , Poliestirenos , Poliuretanos , Humanos , Cárie Dentária/prevenção & controle , Fluoretos , Caulim , Suscetibilidade à Cárie Dentária , Resinas Compostas/farmacologia , Resinas Compostas/química , Materiais Dentários , Acrilamidas
12.
J Sci Food Agric ; 104(6): 3665-3675, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38158728

RESUMO

BACKGROUND: The limited physicochemical properties (such as low foaming and emulsifying capacity) of mung bean protein hydrolysate restrict its application in the food industry. Ultrasound treatment could change the structures of protein hydrolysate to accordingly affect its physicochemical properties. The aim of this study was to investigate the effects of ultrasound treatment on the structural and physicochemical properties of mung bean protein hydrolysate of protamex (MBHP). The structural characteristics of MBHP were evaluated using tricine sodium dodecylsulfate-polyacrylamide gel electrophoresis, laser scattering, fluorescence spectrometry, etc. Solubility, fat absorption capacity and foaming, emulsifying and thermal properties were determined to characterize the physicochemical properties of MBHP. RESULTS: MBHP and ultrasonicated-MBHPs (UT-MBHPs) all contained five main bands of 25.8, 12.1, 5.6, 4.8 and 3.9 kDa, illustrating that ultrasound did not change the subunits of MBHP. Ultrasound treatment increased the contents of α-helix, ß-sheet and random coil and enhanced the intrinsic fluorescence intensity of MBHP, but decreased the content of ß-turn, which demonstrated that ultrasound modified the secondary and tertiary structures of MBHP. UT-MBHPs exhibited higher solubility, foaming capacity and emulsifying properties than MBHP, among which MBHP-330 W had the highest solubility (97.32%), foaming capacity (200%), emulsification activity index (306.96 m2 g-1 ) and emulsion stability index (94.80%) at pH 9.0. CONCLUSION: Ultrasound treatment enhanced the physicochemical properties of MBHP, which could broaden its application as a vital ingredient in the food industry. © 2023 Society of Chemical Industry.


Assuntos
Fabaceae , Vigna , Vigna/química , Hidrolisados de Proteína/química , Proteínas de Plantas/química , Solubilidade
13.
Rev Sci Instrum ; 94(4)2023 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38081229

RESUMO

The emerging market of wearable devices for tracking and positioning requires the development of highly flexible magnetic sensors. Due to the stable magnetoresistance ratio and simple fabrication process, sensors based on the anisotropic magnetoresistance (AMR) effect have been proposed as promising candidates. However, the stability of AMR sensors under different bending situations has rarely been investigated. In this work, we proposed a flexible AMR magnetic sensor deposited on an ultra-thin Kapton substrate, which exhibits excellent anti-fatigue behavior at different bending curvatures ranging from 1/3 to 1/10 mm-1. Experimental results show that the sensitivity of our proposed flexible AMR sensor remains as high as 0.25 Oe-1 after being bent 500 times, showing promising potential for application in wearable electronic devices.

14.
Nanomaterials (Basel) ; 13(24)2023 Dec 17.
Artigo em Inglês | MEDLINE | ID: mdl-38133055

RESUMO

The flexible electronics have application prospects in many fields, including as wearable devices and in structural detection. Spintronics possess the merits of a fast response and high integration density, opening up possibilities for various applications. However, the integration of miniaturization on flexible substrates is impeded inevitably due to the high Joule heat from high current density (1012 A/m2). In this study, a prototype flexible spintronic with device antiferromagnetic/ferromagnetic heterojunctions is proposed. The interlayer coupling strength can be obviously altered by sunlight soaking via direct photo-induced electron doping. With the assistance of a small magnetic field (±125 Oe), the almost 180° flip of magnetization is realized. Furthermore, the magnetoresistance changes (15~29%) of flexible spintronics on fingers receiving light illumination are achieved successfully, exhibiting the wearable application potential. Our findings develop flexible spintronic sensors, expanding the vision for the novel generation of photovoltaic/spintronic devices.

15.
ACS Omega ; 8(42): 38926-38932, 2023 Oct 24.
Artigo em Inglês | MEDLINE | ID: mdl-37901524

RESUMO

Low permeability reservoirs are characterized by low permeability, small pore throat, strong heterogeneity, and poor injection-production ability. High shale content of the reservoir, strong pressure sensitivity, micropore undersaturation, and significant water-lock effect in water injection development lead to increased fluid seepage resistance. There is an urgent need to adopt physical and chemical methods to supplement energy and improve infiltration efficiency, thereby forming effective methods for increasing the production and efficiency. Aiming at the characteristics of ultralow permeability reservoirs, in this paper, a green and environmental friendly biobased profile control and displacement agent (Bio Nano30) has been developed using noncovalent supramolecular interaction. Physical simulation experiments illustrate the profile control and displacement mechanism of Bio-Nano30. Laboratory experiments and field applications show that good results have been achieved in oil well plugging removal, water well pressure reduction and injection increase, and well group profile control and oil displacement. This research has good application prospects in low permeability heterogeneous reservoirs.

17.
Micromachines (Basel) ; 14(10)2023 Sep 28.
Artigo em Inglês | MEDLINE | ID: mdl-37893290

RESUMO

Graphene, as a novel thermoelectric (TE) material, has received growing attention because of its unique microstructure and excellent thermoelectric properties. In this paper, graphene fibers (GFs) are synthesized by a facile microfluidic spinning technique using a green reducing agent (vitamin C). The GFs have the merits of high electrical conductivity (2448 S/m), high flexibility, and light weight. Further, a flexible temperature sensor based on GF and platinum (Pt) with a sensitivity of 29.9 µV/°C is proposed, and the thermal voltage output of the sensor can reach 3.45 mV at a temperature gradient of 120 °C. The sensor has good scalability in length, and its sensitivity can increase with the number of p-n thermocouples. It has good cyclic stability, repeatability, resistance to bending interference, and stability, showing great promise for applications in real-time detection of human body temperature.

18.
Nanomaterials (Basel) ; 13(17)2023 Sep 03.
Artigo em Inglês | MEDLINE | ID: mdl-37686990

RESUMO

A wireless passive temperature sensor based on a metamaterial structure is proposed that is capable of measuring the temperature of moving parts. The sensor structure consists of an alumina ceramic substrate with a square metal double split-ring resonator fixed centrally on the ceramic substrate. Since the dielectric constant of the alumina ceramic substrate is temperature sensitive, the resonant frequency of the sensor is altered due to changes in temperature. A wireless antenna is used to detect the change in the resonant frequency of the sensor using a wireless antenna, thereby realizing temperature sensing operation of the sensor. The temperature sensitivity of the sensor is determined to be 205.22 kHz/°C with a strong linear response when tested over the temperature range of 25-135 °C, which is evident from the R2 being 0.995. Additionally, the frequency variation in this sensor is insensitive to the angle of rotation and can be used for temperature measurement of rotating parts. The sensor also has a distance warning functionality, which offers additional safety for the user by providing early warning signals when the heating equipment overheats after operating for extended durations.

19.
Microbiome ; 11(1): 211, 2023 09 26.
Artigo em Inglês | MEDLINE | ID: mdl-37752514

RESUMO

BACKGROUND: Ocean warming is a leading cause of increasing episodes of coral bleaching, the dissociation between coral hosts and their dinoflagellate algal symbionts in the family Symbiodiniaceae. While the diversity and flexibility of Symbiodiniaceae is presumably responsible for variations in coral response to physical stressors such as elevated temperature, there is little data directly comparing physiological performance that accounts for symbiont identity associated with the same coral host species. Here, using Pocillopora damicornis harboring genotypically distinct Symbiodiniaceae strains, we examined the physiological responses of the coral holobiont and the dynamics of symbiont community change under thermal stress in a laboratory-controlled experiment. RESULTS: We found that P. damicornis dominated with symbionts of metahaplotype D1-D4-D6 in the genus Durusdinium (i.e., PdD holobiont) was more robust to thermal stress than its counterpart with symbionts of metahaplotype C42-C1-C1b-C1c in the genus Cladocopium (i.e., PdC holobiont). Under ambient temperature, however, the thermally sensitive Cladocopium spp. exhibited higher photosynthetic efficiency and translocated more fixed carbon to the host, likely facilitating faster coral growth and calcification. Moreover, we observed a thermally induced increase in Durusdinium proportion in the PdC holobiont; however, this "symbiont shuffling" in the background was overwhelmed by the overall Cladocopium dominance, which coincided with faster coral bleaching and reduced calcification. CONCLUSIONS: These findings support that lineage-specific symbiont dominance is a driver of distinct coral responses to thermal stress. In addition, we found that "symbiont shuffling" may begin with stress-forced, subtle changes in the rare biosphere to eventually trade off growth for increased resilience. Furthermore, the flexibility in corals' association with thermally tolerant symbiont lineages to adapt or acclimatize to future warming oceans should be viewed with conservative optimism as the current rate of environmental changes may outpace the evolutionary capabilities of corals. Video Abstract.


Assuntos
Antozoários , Dinoflagellida , Animais , Antozoários/fisiologia , Recifes de Corais , Simbiose/fisiologia , Fotossíntese
20.
Micromachines (Basel) ; 14(8)2023 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-37630086

RESUMO

Integrated periodic structure reference materials are crucial for calibration in optical instruments and micro-computed tomography (micro-CT), yet they face limitations concerning a restricted measurement range, a single pattern type, and a single calibration parameter. In this study, we address these challenges by developing integrated periodic structure reference materials with an expanded measurement range, diverse pattern types, and multiple calibration parameters through a combination of photolithography and inductively coupled plasma (ICP) etching process. These reference materials facilitate high-efficiency and multi-value calibration, finding applications in the calibration of optical instruments and micro-CT systems. The simulations were conducted using MATLAB (R2022b) to examine the structure-morphology changes during the single-step ICP etching process. The variation rules governing line widths, periods, etching depths, and side wall verticality in integrated periodic structure reference materials were thoroughly evaluated. Linewidths were accurately extracted utilizing an advanced image processing algorithm, while average period values were determined through the precise Fast Fourier Transform method. The experimental results demonstrate that the relative errors of line widths do not exceed 17.5%, and the relative errors of periods do not exceed 1.5%. Furthermore, precise control of the etching depth was achieved, ranging from 30 to 60 µm for grids with line widths 2-20 µm. The side wall verticality exhibited remarkable consistency with an angle of 90° ± 0.8°, and its relative error was found to be less than 0.9%.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...