Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Biomater Sci ; 12(3): 634-649, 2024 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-38047368

RESUMO

Exosomes have emerged as a promising tool for the delivery of drugs and genetic materials, owing to their biocompatibility and non-immunogenic nature. However, challenges persist in achieving successful oral delivery due to their susceptibility to degradation in the harsh gastrointestinal (GI) environment and impeded transport across the mucus-epithelium barrier. To overcome these challenges, we have developed high-purity bovine milk exosomes (mExo) as a scalable and efficient oral drug delivery system, which can be customized by incorporating hydrophilic and zwitterionic motifs on their surface. In our study, we observed significantly improved transport rates by 2.5-4.5-fold in native porcine intestinal mucus after the introduction of hydrophilic and zwitterionic surface modifications, as demonstrated by transwell setup and fluorescence recovery after photobleaching (FRAP) analysis. Remarkably, mExo functionalized by a block peptide (BP), consisting of cationic and anionic amino acids arranged in blocks at the two ends, demonstrated superior tolerability in the acidic gastric environment (with a protein recovery rate of 84.8 ± 7.7%) and exhibited a 2.5-fold increase in uptake by intestinal epithelial cells. Furthermore, both mExo and mExo-BP demonstrated successful intracellular delivery of functional siRNA, resulting in up to 65% suppression of the target green fluorescence protein (GFP) gene expression at a low dose of siRNA (5 pmol) without causing significant toxicity. These findings highlight the immense potential of modifying mExo with hydrophilic and zwitterionic motifs for effective oral delivery of siRNA therapies.


Assuntos
Exossomos , Nanopartículas , Animais , Suínos , Leite , Exossomos/metabolismo , Sistemas de Liberação de Medicamentos/métodos , Peptídeos/metabolismo , RNA Interferente Pequeno/metabolismo , Permeabilidade , Muco/metabolismo , Administração Oral , Portadores de Fármacos/química , Nanopartículas/química
2.
Adv Drug Deliv Rev ; 200: 114966, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37329985

RESUMO

Gastrointestinal mucus plays essential roles in modulating interactions between intestinal lumen contents, including orally delivered drug carriers and the gut microbiome, and underlying epithelial and immune tissues and cells. This review is focused on the properties of and methods for studying native gastrointestinal mucus and its interactions with intestinal lumen contents, including drug delivery systems, drugs, and bacteria. The properties of gastrointestinal mucus important to consider in its analysis are first presented, followed by a discussion of different experimental setups used to study gastrointestinal mucus. Applications of native intestinal mucus are then described, including experimental methods used to study mucus as a barrier to drug delivery and interactions with intestinal lumen contents that impact barrier properties. Given the significance of the microbiota in health and disease, its impact on drug delivery and drug metabolism, and the use of probiotics and microbe-based delivery systems, analysis of interactions of bacteria with native intestinal mucus is then reviewed. Specifically, bacteria adhesion to, motility within, and degradation of mucus is discussed. Literature noted is focused largely on applications of native intestinal mucus models as opposed to isolated mucins or reconstituted mucin gels.


Assuntos
Aderência Bacteriana , Portadores de Fármacos , Humanos , Portadores de Fármacos/metabolismo , Intestinos , Mucinas/metabolismo , Muco/metabolismo , Bactérias/metabolismo , Mucosa Intestinal/metabolismo
3.
Ann Biomed Eng ; 48(7): 1916-1940, 2020 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-32020347

RESUMO

The barrier functions of the gastrointestinal tract rely in large part on a single layer of columnar intestinal epithelial cells. These epithelial cells are mediators of intestinal homeostasis, regulating and communicating biochemical signals between underlying stromal cells and luminal cues. The development of representative in vitro models to recapitulate the gastrointestinal epithelium is crucial to understanding cell-cell interactions during intestinal homeostasis and dysfunction. Ideally, models would contain microbiota/immune cells, polarized intestinal architecture, multilayered cellular complexity, extracellular matrix, biochemical cues, and mechanical deformation. This review focuses on historical and state of the art biomaterials and substrates used in the field to establish static and fluidic models of the intestinal epithelium. A discussion of conventional adenocarcinoma colon cancer cell lines, primary intestinal epithelial cells derived from organoids, and stromal support cells such as enteric neurons, myofibroblasts, and immune cells, as well as the importance of increasing cellular complexity and future outlook is included.


Assuntos
Células Epiteliais/citologia , Mucosa Intestinal/citologia , Engenharia Tecidual , Animais , Comunicação Celular , Linhagem Celular Tumoral , Sistema Nervoso Entérico/citologia , Matriz Extracelular , Homeostase , Humanos , Sistema Imunitário/citologia , Miofibroblastos/citologia , Organoides , Células Estromais/citologia , Técnicas de Cultura de Tecidos
4.
Sci Rep ; 8(1): 10008, 2018 07 03.
Artigo em Inglês | MEDLINE | ID: mdl-29968743

RESUMO

The consumption of generally regarded as safe emulsifiers has increased, and has been associated with an increased prevalence of inflammatory bowel and metabolic diseases, as well as an altered microbiome. The mucus barrier, which selectively controls the transport of particulates and microorganisms to the underlying epithelial layer, has been previously shown to be altered by dietary salts and lipids. However, the potential impact of emulsifiers on the protective mucus barrier, its permeability, and associated structural changes are not clear. In this study, we analyzed changes in the mucus barrier to both passively diffusing nanoparticles and actively swimming E. coli upon exposure to two emulsifiers, carboxymethylcellulose (CMC) and polysorbate 80 (Tween). When exposed to CMC, mucus pore size decreased, which resulted in significantly slower E. coli speed and particle diffusion rates through mucus. Tween exposure minimally impacted mucus microstructure and particle diffusion, but increased E. coli speed in mucus. Moreover, both emulsifiers appeared to alter mucus amount and thickness in rat intestinal tissue and mucus-producing cell cultures. These results indicate that acute exposure to emulsifiers impacts barrier and structural properties of intestinal mucus, modulating interactions between intestinal lumen contents, microbes, and underlying tissue, which may contribute to development of intestinal inflammation.


Assuntos
Carboximetilcelulose Sódica/farmacologia , Emulsificantes/farmacologia , Mucosa Intestinal/metabolismo , Polissorbatos/farmacologia , Junções Íntimas/fisiologia , Animais , Transporte Biológico/fisiologia , Carboximetilcelulose Sódica/efeitos adversos , Linhagem Celular , Emulsificantes/efeitos adversos , Escherichia coli/genética , Células HT29 , Humanos , Mucosa Intestinal/ultraestrutura , Masculino , Muco/metabolismo , Nanopartículas/metabolismo , Polissorbatos/efeitos adversos , Ratos , Ratos Wistar , Suínos
5.
ScientificWorldJournal ; 2013: 249034, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23737711

RESUMO

A hybrid self-adaptive harmony search and back-propagation mining system was proposed to discover weighted patterns in human intron sequences. By testing the weights under a lazy nearest neighbor classifier, the numerical results revealed the significance of these weighted patterns. Comparing these weighted patterns with the popular intron consensus model, it is clear that the discovered weighted patterns make originally the ambiguous 5SS and 3SS header patterns more specific and concrete.


Assuntos
Algoritmos , Mapeamento Cromossômico/métodos , Genoma Humano/genética , Íntrons/genética , Reconhecimento Automatizado de Padrão/métodos , Análise de Sequência de DNA/métodos , Sequência de Bases , Humanos , Dados de Sequência Molecular
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...