Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 28
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nanotechnology ; 32(30)2021 May 05.
Artigo em Inglês | MEDLINE | ID: mdl-33406508

RESUMO

The nanoflakes of SnS2/SnO2heterostructure and SnS2were synthesized by a one-step SnO2-templated chemical vapor deposition method. The metal oxide-assisted growth mechanism of SnS2/SnO2heterostructure and SnS2nanoflakes were realized through investigating serial microstructures of products with varied growth time. Furthermore, the photocatalytic activity for MB dyes degradation of varied growth time products was used to explore the effect of product microstructure under the visible light irradiation. The SnO2/SnS2heterostructure and the oxide vacancies of nanoflakes demonstrated an improved visible light photocatalytic performance for MB degradation, which was around twice of the pure SnS2nanoflakes and better than P25. The results of different scavengers on the degradation efficiency for MB indicate the·O2-, and ·OH are the main active species in the photodegradation reaction. The one-step growth mechanism of SnS2/SnO2could prove a facile process to grow metal oxide-metal sulfide heterostructure.

2.
Nanotechnology ; 31(32): 324002, 2020 Aug 07.
Artigo em Inglês | MEDLINE | ID: mdl-32453710

RESUMO

Inorganic perovskite quantum dots (IPQDs) such as cesium lead halide (CsPbX3, X = Cl, Br and I) quantum dots have attracted much attention for developing cadmium-free quantum light-emitting displays (QLEDs) based on outstanding light emission properties including narrow full width at half maximum (FWHM), tunable bandgap and ultrahigh (>90%) photoluminescence quantum yield (PLQY). Nevertheless, their poor stability under ambient conditions, at high temperature or under continuous light irradiation is the main problem for practical applications. In this study, a new method is proposed to effectively stabilize CsPbBr3 IPQDs by synthesizing them with sulfate-functionalized cellulose nanocrystals (CNCs) at room temperature without using traditional quantum dot stabilizers such as oleylamine (OLA) and oleic acid (OA). The as-prepared CsPbBr3 IPQD/CNC hybrid paper-like films are highly stable and the relative photoluminescence (PL) intensity can be maintained at 92% under continuous UV light (306 nm, 15 W) illumination for 130 h, >99% at high temperature (100 °C) for 130 h, and >99% in ambient conditions for 15 d. Additionally, the PLQY and FWHM of IPQD/CNC are 45.69% and 22 nm, respectively. The ultrahigh stability and narrow FWHM characteristics proposed here for IPQD/CNC hybrid films can provide new possibilities for practical applications in the future development of IPQD-related devices.

3.
Nanotechnology ; 30(31): 315704, 2019 Aug 02.
Artigo em Inglês | MEDLINE | ID: mdl-30917348

RESUMO

High uniformity of un-doped and Ni-doped CuSe nanowires have been fabricated by smelting the bulk and injecting the molten liquid into the anodic aluminum oxide (AAO) template. The Ni dopant concentration and morphology of CuSe nanowires can be well controlled via preparing the bulk materials and the channel size of the AAO template, respectively. The cathodoluminescence peaks of the un-doped, 0.5 at% and 1.0 at% Ni-doped CuSe nanowires showed a redshift of about 26 nm and 42 nm, respectively, from un-doped CuSe nanowires (579 nm). Furthermore, above room temperature ferromagnetism was observed in 1.0 at% Ni-doped CuSe nanowires at 300 K. The facile injection molding method fabricated nanowires with tunable optical and magnetic properties which could be applied to prepare various nanomaterials for spintronic devices in the future.

4.
Nanoscale Res Lett ; 12(1): 532, 2017 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-28916974

RESUMO

High uniformity Au-catalyzed indium selenide (In2Se3) nanowires are grown with the rapid thermal annealing (RTA) treatment via the vapor-liquid-solid (VLS) mechanism. The diameters of Au-catalyzed In2Se3 nanowires could be controlled with varied thicknesses of Au films, and the uniformity of nanowires is improved via a fast pre-annealing rate, 100 °C/s. Comparing with the slower heating rate, 0.1 °C/s, the average diameters and distributions (standard deviation, SD) of In2Se3 nanowires with and without the RTA process are 97.14 ± 22.95 nm (23.63%) and 119.06 ± 48.75 nm (40.95%), respectively. The in situ annealing TEM is used to study the effect of heating rate on the formation of Au nanoparticles from the as-deposited Au film. The results demonstrate that the average diameters and distributions of Au nanoparticles with and without the RTA process are 19.84 ± 5.96 nm (30.00%) and about 22.06 ± 9.00 nm (40.80%), respectively. It proves that the diameter size, distribution, and uniformity of Au-catalyzed In2Se3 nanowires are reduced and improved via the RTA pre-treated. The systemic study could help to control the size distribution of other nanomaterials through tuning the annealing rate, temperatures of precursor, and growth substrate to control the size distribution of other nanomaterials. Graphical Abstract Rapid thermal annealing (RTA) process proved that it can uniform the size distribution of Au nanoparticles, and then it can be used to grow the high uniformity Au-catalyzed In2Se3 nanowires via the vapor-liquid-solid (VLS) mechanism. Comparing with the general growth condition, the heating rate is slow, 0.1 °C/s, and the growth temperature is a relatively high growth temperature, > 650 °C. RTA pre-treated growth substrate can form smaller and uniform Au nanoparticles to react with the In2Se3 vapor and produce the high uniformity In2Se3 nanowires. The in situ annealing TEM is used to realize the effect of heating rate on Au nanoparticle formation from the as-deposited Au film. The byproduct of self-catalyzed In2Se3 nanoplates can be inhibited by lowering the precursors and growth temperatures.

5.
Nanotechnology ; 28(39): 395201, 2017 Sep 27.
Artigo em Inglês | MEDLINE | ID: mdl-28675756

RESUMO

ZnS nanowires were synthesized via a vapor-liquid-solid mechanism and then fabricated into a single-nanowire field-effect transistor by focused ion beam (FIB) deposition. The field-effect electrical properties of the FIB-fabricated ZnS nanowire device, namely conductivity, mobility and hole concentration, were 9.13 Ω-1 cm-1, 13.14 cm2 V-1 s-1and 4.27 × 1018 cm-3, respectively. The photoresponse properties of the ZnS nanowires were studied and the current responsivity, current gain, response time and recovery time were 4.97 × 106 A W-1, 2.43 × 107, 9 s and 24 s, respectively. Temperature-dependent I-V measurements were used to analyze the interfacial barrier height between ZnS and the FIB-deposited Pt electrode. The results show that the interfacial barrier height is as low as 40 meV. The energy-dispersive spectrometer elemental line scan shows the influence of Ga ions on the ZnS nanowire surface on the FIB-deposited Pt contact electrodes. The results of temperature-dependent I-V measurements and the elemental line scan indicate that Ga ions were doped into the ZnS nanowire, reducing the barrier height between the FIB-deposited Pt electrodes and the single ZnS nanowire. The small barrier height results in the FIB-fabricated ZnS nanowire device acting as a high-gain photosensor.

6.
Nanoscale Res Lett ; 12(1): 290, 2017 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-28438011

RESUMO

In this study, defect-free zinc blende GaAs nanowires on Si (111) by molecular beam epitaxy (MBE) growth are systematically studied through Au-assisted vapor-liquid-solid (VLS) method. The morphology, density, and crystal structure of GaAs nanowires were investigated as a function of substrate temperature, growth time, and As/Ga flux ratio during MBE growth, as well as the thickness, annealing time, and annealing temperature of Au film using scanning electron microscopy (SEM), transmission electron microscopy (TEM), X-ray diffraction (XRD), cathodoluminescence (CL), and Raman spectroscopy. When the As/Ga flux ratio is fixed at 25 and the growth temperature at 540 °C, the GaAs nanowires exhibit a defect-free zinc blende structure with uniform and straight morphology. According to the characteristics of GaAs nanowires grown under varied conditions, a growth mechanism for defect-free zinc blende GaAs nanowires via Au-assisted vapor-liquid-solid (VLS) method is proposed. Finally, doping by Si and Be of nanowires is investigated. The results of doping lead to GaAs nanowires processing n-type and p-type semiconductor properties and reduced electrical resistivity. This study of defect-free zinc blende GaAs nanowire growth should be of assistance in further growth and applications studies of complex III-V group nanostructures.

7.
Nanotechnology ; 28(4): 045705, 2017 Jan 27.
Artigo em Inglês | MEDLINE | ID: mdl-27981953

RESUMO

Bismuth (Bi) nanowires, well controlled in length and diameter, were prepared by using an anodic aluminum oxide (AAO) template-assisted molding injection process with a high cooling rate. A high performance atomic layer deposition (ALD)-capped bismuth-aluminum oxide (Bi-Al2O3) nanothermometer is demonstrated that was fabricated via a facile, low-cost and low-temperature method, including AAO templated-assisted molding injection and low-temperature ALD-capped processes. The thermal behaviors of Bi nanowires and Bi-Al2O3 nanocables were studied by in situ heating transmission electron microscopy. Linear thermal expansion of liquid Bi within native bismuth oxide nanotubes and ALD-capped Bi-Al2O3 nanocables were evaluated from 275 °C to 700 °C and 300 °C to 1000 °C, respectively. The results showed that the ALD-capped Bi-Al2O3 nanocable possesses the highest working temperature, 1000 °C, and the broadest operation window, 300 °C-1000 °C, of a thermal-expanding type nanothermometer. Our innovative approach provides another way of fabricating core-shell nanocables and to further achieve sensing local temperature under an extreme high vacuum environment.

8.
ACS Nano ; 10(9): 8632-44, 2016 09 27.
Artigo em Inglês | MEDLINE | ID: mdl-27603024

RESUMO

Phosphorus-rich transition metal phosphide CuP2 nanowires were synthesized with high quality and high yield (∼60%) via the supercritical fluid-liquid-solid (SFLS) growth at 410 °C and 10.2 MPa. The obtained CuP2 nanowires have a high aspect ratio and exhibit a single crystal structure of monoclinic CuP2 without any impurity phase. CuP2 nanowires have progressive improvement for semiconductors and energy storages compared with bulk CuP2. Being utilized for back-gate field effect transistor (FET) measurement, CuP2 nanowires possess a p-type behavior intrinsically with an on/off ratio larger than 10(4) and its single nanowire electrical transport property exhibits a hole mobility of 147 cm(2) V(-1) s(-1), representing the example of a CuP2 transistor. In addition, CuP2 nanowires can serve as an appealing anode material for a lithium-ion battery electrode. The discharge capacity remained at 945 mA h g(-1) after 100 cycles, showing a good capacity retention of 88% based on the first discharge capacity. Even at a high rate of 6 C, the electrode still exhibited an outstanding result with a capacity of ∼600 mA h g(-1). Ex-situ transmission electron microscopy and CV tests demonstrate that the stability of capacity retention and remarkable rate capability of the CuP2 nanowires electrode are attributed to the role of the metal phosphide conversion-type lithium storage mechanism. Finally, CuP2 nanowire anodes and LiFePO4 cathodes were assembled into pouch-type lithium batteries offering a capacity over 60 mA h. The full cell shows high capacity and stable capacity retention and can be used as an energy supply to operate electronic devices such as mobile phones and mini 4WD cars.

9.
Nanotechnology ; 27(36): 365701, 2016 Sep 09.
Artigo em Inglês | MEDLINE | ID: mdl-27479155

RESUMO

Spin transport in a semiconductor-based two-dimensional electron gas (2DEG) system has been attractive in spintronics for more than ten years. The inherent advantages of high-mobility channel and enhanced spin-orbital interaction promise a long spin diffusion length and efficient spin manipulation, which are essential for the application of spintronics devices. However, the difficulty of making high-quality ferromagnetic (FM) contacts to the buried 2DEG channel in the heterostructure systems limits the potential developments in functional devices. In this paper, we experimentally demonstrate electrical detection of spin transport in a high-mobility 2DEG system using FM Mn-germanosilicide (Mn(Si0.7Ge0.3)x) end contacts, which is the first report of spin injection and detection in a 2DEG confined in a Si/SiGe modulation doped quantum well structure (MODQW). The extracted spin diffusion length and lifetime are l sf = 4.5 µm and [Formula: see text] at 1.9 K respectively. Our results provide a promising approach for spin injection into 2DEG system in the Si-based MODQW, which may lead to innovative spintronic applications such as spin-based transistor, logic, and memory devices.

10.
Nano Lett ; 16(6): 3748-53, 2016 06 08.
Artigo em Inglês | MEDLINE | ID: mdl-27192608

RESUMO

The successful operation of rechargeable batteries relies on reliable insertion/extraction of ions into/from the electrodes. The battery performance and the response of the electrodes to such ion insertion and extraction are directly related to the spatial distribution of the charge and its dynamic evolution. However, it remains unclear how charge is distributed in the electrodes during normal battery operation. In this work, we have used off-axis electron holography to measure charge distribution during lithium ion insertion into a Ge nanowire (NW) under dynamic operating conditions. We discovered that the surface region of the Ge core is negatively charged during the core-shell lithiation of the Ge NW, which is counterbalanced by positive charge on the inner surface of the lithiated LixGe shell. The remainder of the lithiated LixGe shell is free from net charge, consistent with its metallic characteristics. The present work provides a vivid picture of charge distribution and dynamic evolution during Ge NW lithiation and should form the basis for tackling the response of these and related materials under real electrochemical conditions.

11.
Nano Lett ; 16(5): 3109-15, 2016 05 11.
Artigo em Inglês | MEDLINE | ID: mdl-27046777

RESUMO

In this work, we present an ingenious method to fabricate self-aligned nanoscale Hall devices using chemically synthesized nanowires as both etching and deposition masks. This versatile method can be extensively used to make nanoribbons out of arbitrary thin films without the need for extremely high alignment accuracy to define the metal contacts. The fabricated nanoribbon width scales with the mask nanowire width (diameter), and it can be easily reduced down to tens of nanometers. The self-aligned metal contacts from the sidewall extend to the top surface of the nanoribbon, and the overlap can be controlled by tuning the deposition recipe. To demonstrate the feasibility, we have fabricated Ta/CoFeB/MgO nanoribbons sputtered on a SiO2/Si substrate with different metal contacts, using synthesized SnO2 nanowires as masks. Anomalous Hall effect measurements have been carried out on the fabricated nanoscale Hall device in order to study the current-induced magnetization switching in the nanoscale heavy metal/ferromagnet heterostructure, which has shown distinct switching behaviors from micron-scale devices. The developed method provides a useful fabrication platform to probe the charge and spin transport in the nanoscale regime.

12.
Nanoscale ; 8(7): 3926-35, 2016 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-26837410

RESUMO

A design for the fabrication of metallic nanoparticles is presented by thermal dewetting with a chemically heterogeneous nano-template. For the template, we fabricate a nanostructured polystyrene-b-polydimethylsiloxane (PS-b-PDMS) film on a Si|SiO2 substrate, followed by a thermal annealing and reactive ion etching (RIE) process. This gives a template composed of an ordered hexagonal array of SiOC hemispheres emerging in the polystyrene matrix. After the deposition of a FePt film on this template, we utilize the rapid thermal annealing (RTA) process, which provides in-plane stress, to achieve thermal dewetting and structural ordering of FePt simultaneously. Since the template is composed of different composition surfaces with periodically varied morphologies, it offers more tuning knobs to manipulate the nanostructures. We show that both the decrease in the area of the PS matrix and the increase in the strain energy relaxation transfer the dewetted pattern from the randomly distributed nanoparticles into a hexagonal periodic array of L10 FePt nanoparticles. Transmission electron microscopy with the in situ heating stage reveals the evolution of the dewetting process, and confirms that the positions of nanoparticles are aligned with those of the SiOC hemispheres. The nanoparticles formed by this template-dewetting show an average diameter and center-to-center distance of 19.30 ± 2.09 nm and 39.85 ± 4.80 nm, respectively. The hexagonal array of FePt nanoparticles reveals a large coercivity of 1.5 T, much larger than the nanoparticles fabricated by top-down approaches. This approach offers an efficient pathway toward self-assembled nanostructures in a wide range of material systems.

13.
Nanoscale ; 7(3): 901-7, 2015 Jan 21.
Artigo em Inglês | MEDLINE | ID: mdl-25470451

RESUMO

This study reports successful synthesis of non-stoichiometric single-crystal W18O49-xSx nanowires for photosensors with a high absorption rate (>83%) across a wide spectrum (300-2000 nm), a high internal gain (G = 10(6)-10(7)) and a relatively fast response time (approximately 1-3 s). In addition, the correlation between the photoconductivity gain (G) and the surface-to-volume ratio of non-stoichiometric single-crystal W18O49-xSx nanowires was studied. The surface-to-volume ratio and non-stoichiometric material of W18O49-xSx contributed to the photoconductivity gain; hence, the nanowires are favorable for photosensor devices. The wide spectrum obtained also suggests their extensive applications in numerous fields.

14.
Nano Lett ; 14(4): 1823-9, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24564741

RESUMO

In this Letter, the electric-field control of ferromagnetism was demonstrated in a back-gated Mn-doped ZnO (Mn-ZnO) nanowire (NW) field-effect transistor (FET). The ZnO NWs were synthesized by a thermal evaporation method, and the Mn doping of 1 atom % was subsequently carried out in a MBE system using a gas-phase surface diffusion process. Detailed structural analysis confirmed the single crystallinity of Mn-ZnO NWs and excluded the presence of any precipitates or secondary phases. For the transistor, the field-effect mobility and n-type carrier concentration were estimated to be 0.65 cm(2)/V·s and 6.82 × 10(18) cm(-3), respectively. The magnetic hysteresis curves measured under different temperatures (T = 10-350 K) clearly demonstrate the presence of ferromagnetism above room temperature. It suggests that the effect of quantum confinements in NWs improves Tc, and meanwhile minimizes crystalline defects. The magnetoresistace (MR) of a single Mn-ZnO NW was observed up to 50 K. Most importantly, the gate modulation of the MR ratio was up to 2.5 % at 1.9 K, which implies the electric-field control of ferromagnetism in a single Mn-ZnO NW.

15.
Nano Lett ; 13(9): 4036-43, 2013 Sep 11.
Artigo em Inglês | MEDLINE | ID: mdl-23937588

RESUMO

In this Letter, we report the electrical spin injection and detection in Ge nanowire transistors with single-crystalline ferromagnetic Mn5Ge3 as source/drain contacts formed by thermal reactions. Degenerate indium dopants were successfully incorporated into as-grown Ge nanowires as p-type doping to alleviate the conductivity mismatch between Ge and Mn5Ge3. The magnetoresistance (MR) of the Mn5Ge3/Ge/Mn5Ge3 nanowire transistor was found to be largely affected by the applied bias. Specifically, negative and hysteretic MR curves were observed under a large current bias in the temperature range from T = 2 K up to T = 50 K, which clearly indicated the electrical spin injection from ferromagnetic Mn5Ge3 contacts into Ge nanowires. In addition to the bias effect, the MR amplitude was found to exponentially decay with the Ge nanowire channel length; this fact was explained by the dominated Elliot-Yafet spin-relaxation mechanism. The fitting of MR further revealed a spin diffusion length of lsf = 480 ± 13 nm and a spin lifetime exceeding 244 ps at T = 10 K in p-type Ge nanowires, and they showed a weak temperature dependence between 2 and 50 K. Ge nanowires showed a significant enhancement in the measured spin diffusion length and spin lifetime compared with those reported for bulk p-type Ge. Our study of the spin transport in the Mn5Ge3/Ge/Mn5Ge3 nanowire transistor points to a possible realization of spin-based transistors; it may also open up new opportunities to create novel Ge nanowire-based spintronic devices. Furthermore, the simple fabrication process promises a compatible integration into standard Si technology in the future.

16.
Nanoscale ; 5(20): 9875-81, 2013 Oct 21.
Artigo em Inglês | MEDLINE | ID: mdl-23979254

RESUMO

There is strong and growing interest in applying metal silicide nanowires as building blocks for a new class of silicide-based applications, including spintronics, nano-scale interconnects, thermoelectronics, and anti-reflective coating materials. Solution-phase environments provide versatile materials chemistry as well as significantly lower production costs compared to gas-phase synthesis. However, solution-phase synthesis of silicide nanowires remains challenging due to the lack of fundamental understanding of silicidation reactions. In this study, single-crystalline Cu3Si nanowire arrays were synthesized in an organic solvent. Self-catalyzed, dense single-crystalline Cu3Si nanowire arrays were synthesized by thermal decomposition of monophenylsilane in the presence of copper films or copper substrates at 420 to 475 °C and 10.3 MPa in supercritical benzene. The solution-grown Cu3Si nanowire arrays serve dual functions as field emitters and anti-reflective layers, which are reported on copper silicide materials for the first time. Cu3Si nanowires exhibit superior field-emission properties, with a turn-on-voltage as low as 1.16 V µm(-1), an emission current density of 8 mA cm(-2) at 4.9 V µm(-1), and a field enhancement factor (ß) of 1500. Cu3Si nanowire arrays appear black with optical absorption less than 5% between 400 and 800 nm with minimal reflectance, serving as highly efficient anti-reflective layers. Moreover, the Cu3Si nanowires could be grown on either rigid or flexible substrates (PI). This study shows that solution-phase silicide reactions are adaptable for high-quality silicide nanowire growth and demonstrates their promise towards fabrication of metal silicide-based devices.

17.
Phys Chem Chem Phys ; 15(8): 2654-9, 2013 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-23340577

RESUMO

The influence of the catalyst materials on the electron transport behaviors of InAs nanowires (NWs) grown by a conventional vapor transport technique is investigated. Utilizing the NW field-effect transistor (FET) device structure, ~20% and ~80% of Au-catalyzed InAs NWs exhibit strong and weak gate dependence characteristics, respectively. In contrast, ~98% of Ni-catalyzed InAs NWs demonstrate a uniform n-type behavior with strong gate dependence, resulting in an average OFF current of ~10(-10) A and a high I(ON)/I(OFF) ratio of >10(4). The non-uniform device performance of Au-catalyzed NWs is mainly attributed to the non-stoichiometric composition of the NWs grown from a different segregation behavior as compared to the Ni case, which is further supported by the in situ TEM studies. These distinct electrical characteristics associated with different catalysts were further investigated by the first principles calculation. Moreover, top-gated and large-scale parallel-array FETs were fabricated with Ni-catalyzed NWs by contact printing and channel metallization techniques, which yield excellent electrical performance. The results shed light on the direct correlation of the device performance with the catalyst choice.

18.
Nano Lett ; 12(12): 6372-9, 2012 Dec 12.
Artigo em Inglês | MEDLINE | ID: mdl-23167773

RESUMO

In this Letter, the magnetic phase transition and domain wall motion in a single-crystalline Mn(5)Ge(3) nanowire were investigated by temperature-dependent magneto-transport measurements. The ferromagnetic Mn(5)Ge(3) nanowire was fabricated by fully germaniding a single-crystalline Ge nanowire through the solid-state reaction with Mn contacts upon thermal annealing at 450 °C. Temperature-dependent four-probe resistance measurements on the Mn(5)Ge(3) nanowire showed a clear slope change near 300 K accompanied by a magnetic phase transition from ferromagnetism to paramagnetism. The transition temperature was able to be controlled by both axial and radial magnetic fields as the external magnetic field helped maintain the magnetization aligned in the Mn(5)Ge(3) nanowire. Near the magnetic phase transition, the critical behavior in the 1D system was characterized by a power-law relation with a critical exponent of α = 0.07 ± 0.01. Besides, another interesting feature was revealed as a cusp at about 67 K in the first-order derivative of the nanowire resistance, which was attributed to a possible magnetic transition between two noncollinear and collinear ferromagnetic states in the Mn(5)Ge(3) lattice. Furthermore, temperature-dependent magneto-transport measurements demonstrated a hysteretic, symmetric, and stepwise axial magnetoresistance of the Mn(5)Ge(3) nanowire. The interesting features of abrupt jumps indicated the presence of multiple domain walls in the Mn(5)Ge(3) nanowire and the annihilation of domain walls driven by the magnetic field. The Kurkijärvi model was used to describe the domain wall depinning as thermally assisted escape from a single energy barrier, and the fitting on the temperature-dependent depinning magnetic fields yielded an energy barrier of 0.166 eV.

19.
Anal Chem ; 84(15): 6312-6, 2012 Aug 07.
Artigo em Inglês | MEDLINE | ID: mdl-22816618

RESUMO

Transmission electron microscopy (TEM) is a unique and powerful tool for observation of nanoparticles. However, due to the uneven spatial distribution of particles conventionally dried on copper grids, TEM is rarely employed to evaluate the spatial distribution of nanoparticles in aqueous solutions. Here, we present a microchip nanopipet with a narrow chamber width for sorting nanoparticles from blood and preventing the aggregation of the particles during the drying process, enabling quantitative analysis of their aggregation/agglomeration states and the particle concentration in aqueous solutions. This microchip is adaptable to all commercial TEM holders. Such a nanopipet proves to be a simple and convenient sampling device for TEM image-based quantitative characterization.


Assuntos
Microscopia Eletrônica de Transmissão , Nanopartículas/análise , Ouro/química , Humanos , Dispositivos Lab-On-A-Chip , Nanotecnologia/instrumentação , Plasma/química , Polietilenoglicóis/química
20.
ACS Nano ; 6(6): 5710-7, 2012 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-22658951

RESUMO

To explore spintronics applications for Ge nanowire heterostructures formed by thermal annealing, it is critical to develop a ferromagnetic germanide with high Curie temperature and take advantage of the high-quality interface between Ge and the formed ferromagnetic germanide. In this work, we report, for the first time, the formation and characterization of Mn(5)Ge(3)/Ge/Mn(5)Ge(3) nanowire transistors, in which the room-temperature ferromagnetic germanide was found through the solid-state reaction between a single-crystalline Ge nanowire and Mn contact pads upon thermal annealing. The atomically clean interface between Mn(5)Ge(3) and Ge with a relatively small lattice mismatch of 10.6% indicates that Mn(5)Ge(3) is a high-quality ferromagnetic contact to Ge. Temperature-dependent I-V measurements on the Mn(5)Ge(3)/Ge/Mn(5)Ge(3) nanowire heterostructure reveal a Schottky barrier height of 0.25 eV for the Mn(5)Ge(3) contact to p-type Ge. The Ge nanowire field-effect transistors built on the Mn(5)Ge(3)/Ge/Mn(5)Ge(3) heterostructure exhibit a high-performance p-type behavior with a current on/off ratio close to 10(5), and a hole mobility of 150-200 cm(2)/(V s). Temperature-dependent resistance of a fully germanided Mn(5)Ge(3) nanowire shows a clear transition behavior near the Curie temperature of Mn(5)Ge(3) at about 300 K. Our findings of the high-quality room-temperature ferromagnetic Mn(5)Ge(3) contact represent a promising step toward electrical spin injection into Ge nanowires and thus the realization of high-efficiency spintronic devices for room-temperature applications.


Assuntos
Germânio/química , Imãs , Nanopartículas/química , Nanopartículas/ultraestrutura , Transistores Eletrônicos , Desenho de Equipamento , Análise de Falha de Equipamento , Teste de Materiais , Tamanho da Partícula
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...