Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 43
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Artigo em Inglês | MEDLINE | ID: mdl-39037063

RESUMO

Rice bran oil is a type of rice oil made by leaching or pressing during rice processing and has a high absorption rate after consumption. When oxidative rancidity occurs, it may cause oxidative stress (OS) and affect intestinal function. Meanwhile, the toxic effects of oxidised rice bran oil have been less well studied in pigs. Therefore, the IPEC-J2 cells model was chosen to explore the regulatory mechanisms of oxidised rice bran oil on OS and apoptosis. Oxidised rice bran oil extract treatment (OR) significantly decreased the viability of IPEC-J2 cells. The results showed that OR significantly elevated apoptosis and reactive oxygen species levels and promoted the expression of pro-apoptotic gene Caspase-3 messenger RNA levels. The activation of Nrf2 signalling pathway by OR decreased the cellular antioxidant capacity. This was further evidenced by the expression of kelch-like ECH-associated protein 1, heme oxygenase 1, NADH: quinone oxidoreductase 1, superoxide dismutase 2 and heat shock 70 kDa protein genes and proteins were all downregulated. In conclusion, our results suggested that oxidised rice bran oil induced damage in IPEC-J2 cells through the Nrf2 signalling pathway.

2.
Int J Mol Sci ; 25(13)2024 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-39000093

RESUMO

Deoxynivalenol (DON) is a mycotoxin produced by Fusarium graminearum, and curcumin (CUR) is a natural polyphenolic compound found in turmeric. However, the combined treatment of CUR and DON to explore the mitigating effect of CUR on DON and their combined mechanism of action is not clear. Therefore, in this study, we established four treatment groups (CON, CUR, DON and CUR + DON) to investigate their mechanism in the porcine intestinal epithelial cells (IPEC-J2). In addition, the cross-talk and alleviating potential of CUR interfering with DON-induced cytotoxic factors were evaluated by in vitro experiments; the results showed that CUR could effectively inhibit DON-exposed activated TNF-α/NF-κB pathway, attenuate DON-induced apoptosis, and alleviate DON-induced endoplasmic reticulum stress and oxidative stress through PERK/CHOP pathways, which were verified at both mRNA and protein levels. In conclusion, these promising findings may contribute to the future use of CUR as a novel feed additive to protect livestock from the harmful effects of DON.


Assuntos
Apoptose , Curcumina , Estresse do Retículo Endoplasmático , Tricotecenos , Tricotecenos/farmacologia , Tricotecenos/toxicidade , Animais , Curcumina/farmacologia , Suínos , Apoptose/efeitos dos fármacos , Estresse do Retículo Endoplasmático/efeitos dos fármacos , Linhagem Celular , Estresse Oxidativo/efeitos dos fármacos , Transdução de Sinais/efeitos dos fármacos , Células Epiteliais/efeitos dos fármacos , Células Epiteliais/metabolismo , NF-kappa B/metabolismo , Fator de Necrose Tumoral alfa/metabolismo
3.
Nat Immunol ; 2024 Jul 12.
Artigo em Inglês | MEDLINE | ID: mdl-38997431

RESUMO

A subset of individuals exposed to Mycobacterium tuberculosis (Mtb) that we refer to as 'resisters' (RSTR) show evidence of IFN-γ- T cell responses to Mtb-specific antigens despite serially negative results on clinical testing. Here we found that Mtb-specific T cells in RSTR were clonally expanded, confirming the priming of adaptive immune responses following Mtb exposure. RSTR CD4+ T cells showed enrichment of TH17 and regulatory T cell-like functional programs compared to Mtb-specific T cells from individuals with latent Mtb infection. Using public datasets, we showed that these TH17 cell-like functional programs were associated with lack of progression to active tuberculosis among South African adolescents with latent Mtb infection and with bacterial control in nonhuman primates. Our findings suggested that RSTR may successfully control Mtb following exposure and immune priming and established a set of T cell biomarkers to facilitate further study of this clinical phenotype.

4.
RSC Adv ; 14(26): 18453-18458, 2024 Jun 06.
Artigo em Inglês | MEDLINE | ID: mdl-38860250

RESUMO

Asymmetric catalytic processes promoted by N-heterocyclic carbenes (NHCs) hold great potential for the sustainable preparation of chiral molecules. However, catalyzing the reactions by manipulating the reactive intermediates is challenging. We report herein that the known NHC-catalyzed [3 + 2] annulation reaction between ketimine and enal can also be turned into a [2 + 3] annulation reaction for the highly enantioselective direct synthesis of trifluoroethyl 3,2'-spirooxindole γ-lactams (4) through timely catalysis of the intermediates. DFT calculations revealed that this transformation included the key step of the nucleophilic attack of the Breslow intermediate M2 derived from NHC and enal (2) to the unattacked ketimine (1). Our study demonstrates that it is possible to tune the desired selectivities through the dynamic catalysts of the reactive intermediates.

5.
Front Vet Sci ; 11: 1349754, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38711539

RESUMO

Introduction: This study investigated the effects of storage japonica brown rice (SJBR) and bile acids (BA) on the growth performance, meat quality, and intestinal microbiota of growing-finishing Min pigs. Methods: A total of 24 healthy Min pigs with a similar body weight of 42.25 ± 2.13 kg were randomly divided into three groups with eight replicates of one pig each. The groups were as follows: CON (50% corn), SJBR (25% corn +25% SJBR), and SJBR + BA (25% corn +25% SJBR +0.025% hyodeoxycholic acid). The experimental period lasted from day 90 (the end of the nursery phase) to day 210 (the end of the finishing phase). Results: The results showed the following: (1) Compared with the CON group, there was no significant difference in the average daily gain (ADG) and average daily feed intake (ADFI) of the SJBR and SJBR + BA groups, and the feed conversion ratio (FCR) was significantly decreased (p < 0.05). (2) Compared with the CON group, the total protein (TP) content in the serum was significantly increased, and the blood urea nitrogen (BUN) content was significantly decreased (p < 0.05) in the SJBR and SJBR + BA groups; moreover, HDL-C was significantly higher by 35% (p < 0.05) in the SJBR + BA group. (3) There were no significant differences in carcass weight, carcass length, pH, drip loss, cooking loss, and shear force among the groups; the eye muscle area was significantly increased in the SJBR group compared with the CON group (p < 0.05); back fat thickness was significantly decreased in the SJBR + BA group compared with the SJBR group (p < 0.05); and the addition of SJBR significantly increased the mRNA expression of MyHC I in the longissimus dorsi (LD) muscle of growing-finishing Min pigs (p < 0.05). (4) The cecal bacteria were detected using 16S rDNA, and the proportion of Lactobacillus was increased gradually at the genus level, but there was no significant difference among the different groups. Conclusion: In conclusion, 25% SJBR can improve the growth performance and increase the abundance of intestinal beneficial bacteria, and based on this, adding bile acids can reduce the back fat thickness of growing-finishing Min pigs.

6.
J Adv Res ; 2024 Mar 11.
Artigo em Inglês | MEDLINE | ID: mdl-38471647

RESUMO

INTRODUCTION: Phosphatidylinositol 3-kinases (PI3Ks) overexpression can elicit cellular homeostatic dysregulation, which further contributes to tumorigenesis, with PI3Kα emerging as the most prevalent mutant isoform kinase among PI3Ks. Therefore, selective inhibitors targeting PI3Kα have attracted considerable interest in recent years. Molecular hybridization, with the advantage of simplified pharmacokinetics and drug-drug interactions, emerged as one of the important avenues for discovering potential drugs. OBJECTIVES: This study aimed to construct PI3Kα inhibitors by hybridization and investigate their antitumor activity and mechanism. METHODS: 26 quinazoline-2-indolinone derivatives were obtained by molecular hybridization, and their structure-activity relationship was analyzed by MTT, in vitro kinase activity and molecular docking. The biological evaluation of compound 8 was performed by transwell, flow cytometry, laser scanning confocal microscopy, Western blot, CTESA and immunohistochemistry. RESULTS: Here, we employed molecular hybridization methods to construct a series of quinazoline-2-indolinone derivatives as PI3Kα selective inhibitors. Encouragingly, representative compound 8 exhibited a PI3Kα enzymatic IC50 value of 9.11 nM and 10.41/16.99/37.53-fold relative to the biochemical selectivity for PI3Kß/γ/δ, respectively. Moreover, compound 8 effectively suppressed the viability of B16, HCT116, MCF-7, H22, PC-3, and A549 cells (IC50 values: 0.2 µM âˆ¼ 0.98 µM), and dramatically inhibited the proliferation and migration of NSCLC cells, as well as induced mitochondrial apoptosis through the PI3K/Akt/mTOR pathway. Importantly, compound 8 demonstrated potent in vivo anti-tumor activity in non-small cell lung cancer mouse models without visible toxicity. CONCLUSIONS: This study presented a new avenue for the development of PI3Kα inhibitors and provided a solid foundation for novel QHIDs as potential future therapies for the treatment of NSCLC.

7.
ACS Omega ; 9(11): 12835-12849, 2024 Mar 19.
Artigo em Inglês | MEDLINE | ID: mdl-38524473

RESUMO

Thick coal seam fracture stimulations were conducted to enhance pre-gas drainage efficiency through the use of a highly pressurized multidischarge carbon dioxide gas fracturing technique. This method also offers potential as a strategy for carbon dioxide sequestration, aiding in the reduction of atmospheric carbon dioxide levels and thereby contributing to the fight against climate change. This paper discusses findings from both field experiments and numerical simulations. Data from the field show that the multidischarge fracturing approach significantly improves permeability in thick coal seams, thereby boosting gas drainage effectiveness. Additionally, the impact of increasing the number of fracturing devices is more pronounced at distances of 2.5 or 7.5 m from the borehole but becomes more complex at 12.5 m or further. The numerical simulations reveal that this technique primarily enhances coal seam gas drainage by improving the seam permeability and establishing a gas pressure gradient within the seam. It is noted that the radius of failure around the borehole wall expands with higher discharge pressures, while the radius of effective drainage narrows as the gap between discharge heads increases. Moreover, adding more discharge sets significantly influences the deformation and permeability of the coal seam within a 5 m radius of the fracturing borehole, but the influence is not obvious after 10 m from the fracturing borehole.

8.
Eur J Med Chem ; 267: 116183, 2024 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-38354520

RESUMO

Triggering ferroptosis is a potential therapeutic pathway and strategy for the prospective treatment of lethal hepatocellular carcinoma (HCC). The asialo-glycoprotein receptor (ASGPR) is an over-expressed receptor on the membranes of hepatocellular carcinoma cells (HCCs) and binds specifically to galactose (Gal) ligand. Celastrol (CE) is a potent anticancer natural product, but its poor water solubility and severe toxicity restrict its clinical application. In this study, a carrier-free self-assembled nanoparticles, CE-Gal-NPs, were designed and prepared by nanoprecipitation method, which could recognize ASGPR receptor by active targeting (Gal ligand) and passive targeting (EPR effect), access to the cell through the clathrin pathway and finally internalize to lysosomes. CE-Gal-NPs triggered reactive oxygen species (ROS)-mediated ferroptosis pathway and exerted anti-HCC effects in vitro and in vivo by down-regulating GPX4 and up-regulating COX-2 expression, depleting glutathione (GSH) levels, and increasing lipid peroxidation levels in cells and tumor tissues. In the H22 xenograft mouse model, the CE-Gal-NPs group exhibited dramatically superior tumor inhibition than the CE group, while Gal conjugating diminished the systemic toxicity of CE. Consequently, this study presented a promising strategy for CE potentiation and toxicity reduction, as well as a potential guideline for the development of clinically targeted therapeutic agents for HCC.


Assuntos
Carcinoma Hepatocelular , Ferroptose , Neoplasias Hepáticas , Triterpenos Pentacíclicos , Humanos , Camundongos , Animais , Carcinoma Hepatocelular/patologia , Neoplasias Hepáticas/patologia , Galactose , Nanomedicina , Ligantes , Células Hep G2
9.
Animals (Basel) ; 14(2)2024 Jan 18.
Artigo em Inglês | MEDLINE | ID: mdl-38254475

RESUMO

In this experiment, glucose master liquor and corn steep liquor were used as carbon and nitrogen sources, and Candida utilis was used as a strain to ferment yeast feed. The OD value and number of yeast cells were used as response values to optimize the medium components of the yeast feed through a response surface methodology. The optimal medium components were a glucose master liquor concentration of 8.3%, a corn steep liquor concentration of 1.2%, and a KH2PO4 concentration of 0.14%. Under this condition of fermentation, the OD value was 0.670 and the number of yeast cells was 2.72 × 108/mL. Then, we fed Candida utilis feed to Dongliao black piglets, and the effects of the yeast feed on the piglets' growth performance, fecal microbiota, and plasma metabolic levels were investigated through 16S rDNA sequencing and metabolomics. In total, 120 black piglets with an average initial weight of 6.90 ± 1.28 kg were randomly divided into two groups. One group was fed the basic diet (the CON group), and the other was supplemented with 2.5% Candida utilis add to the basic diet (the 2.5% CU group). After a pre-feeding period, the formal experiments were performed for 21 days. The results showed that the addition of Candida utilis to the diet did not affect growth performance compared with the control group. Meanwhile, no significant differences were observed in the serum biochemical indices. However, piglets in the 2.5% CU group had a significantly altered fecal microbiota, with an increased abundance of Clostridium_sensu_stricto_1, Lactobacillus, and Muribaculaceae_unclassified. Regarding the plasma metabolome, the 12 differential metabolites detected were mainly enriched in the histidine, tryptophan, primary bile acid, and caffeine metabolic pathways. Regarding the integrated microbiome-metabolome analysis, differential metabolites correlated with fecal flora to variable degrees, but most of them were beneficial bacteria of Firmicutes. Collectively, dietary Candida utilis feed had no adverse effect on growth performance; however, it played an important role in regulating fecal flora and maintaining metabolic levels.

10.
Bioorg Chem ; 143: 107069, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38160477

RESUMO

Tetrandrine (TET) possesses multiple pharmacological activities and could suppress tumor proliferation via PI3K pathway inhibition. However, inferior antitumor activity and potential toxicity limit its clinical application. In the present study, a series of 14-sulfonamide and sulfonate TET derivatives were designed, synthesized, and evaluated for biological activities. Through structural-activity relationship studies, compound 3c with α, ß-unsaturated carbonyl group exhibited the most potent activity against all tested tumor cell lines (including Hela, HCT116, HepG2, MCF-7, and SHSY5Y), as well as negligible toxicity against normal cell lines LO2 and HEK293. Additionally, compound 3c effectively inhibited HCT116 and CT26 cell proliferation in vitro with increased cell proportion in the G2/M phase, activated the mitochondrial apoptosis pathway, and induced colon cancer cell apoptosis by suppressing the PI3K/AKT/mTOR pathway. The further molecular docking results confirmed that compound 3c is potentially bound to multiple residues in PI3K with a stronger binding affinity than TET. Ultimately, compound 3c dramatically suppressed tumor growth in the CT26 xenograft tumor model, without noticeable visceral toxicity detected in the high-dose group. In summary, compound 3c might present new insights for designing new PI3K inhibitors and be a potential candidate for colon cancer treatment.


Assuntos
Benzilisoquinolinas , Neoplasias do Colo , Proteínas Proto-Oncogênicas c-akt , Humanos , Proteínas Proto-Oncogênicas c-akt/metabolismo , Transdução de Sinais , Fosfatidilinositol 3-Quinases/metabolismo , Simulação de Acoplamento Molecular , Células HEK293 , Serina-Treonina Quinases TOR/metabolismo , Linhagem Celular Tumoral , Apoptose , Proliferação de Células , Neoplasias do Colo/tratamento farmacológico , Neoplasias do Colo/metabolismo
11.
Toxins (Basel) ; 15(12)2023 11 30.
Artigo em Inglês | MEDLINE | ID: mdl-38133183

RESUMO

Zearalenone (ZEA) is a mycotoxin with an estrogen-like effect that is widely found in feed. Lipopolysaccharides (LPS) derived from Gram-negative bacteria are a common endotoxin, and both toxins have effects on human and livestock health. During animal feeding, ZEA as an exotoxin and LPS as an endotoxin have the potential to co-exist in organisms. At present, other studies have only focused on the hazards of single toxins, but there are fewer studies on the coexistence and interaction between ZEA and LPS. Therefore, a further study to investigate the combined toxic effects of different concentrations of ZEA and LPS is warranted. Quercetin (QUE) is a natural flavonoid compound with strong antioxidant and anti-inflammatory properties. It is unclear whether QUE can mitigate the combined effects of ZEA and LPS. IPEC-J2, isolated from the jejunum of non-breastfed neonatal piglets, is an ideal model for the study of epithelial cell transport, intestinal bacterial interactions, and the nutrient modulation of intestinal function. Therefore, the purpose of the present study was to demonstrate the effect of QUE in alleviating the combined toxic effect of ZEA and LPS on IPEC-J2 cell damage. Cell viability was measured after treating IPEC-J2 cells sequentially with 10, 20, 30, 40, 60, 80, and 100 µM ZEA, 1, 10, 50, and 100 µg/mL LPS, and 20, 40, 60, 80, 100, and 200 µM QUE for 24 h. Based on the cell viability results, 20 µM ZEA and 1 µg/mL LPS were selected as the most suitable concentrations for further analysis. For QUE, 20 µM increased the cell viability, while 40-200 µM QUE decreased the cell viability. Therefore, for the subsequent study, 20 µM QUE was selected in combination with 20 µM ZEA and 1 µg/mL LPS. The results showed that QUE increased the cellular viability and decreased the LDH content more compared to the effects of the ZEA+LPS group. At the gene level, QUE addition up-regulated the expression of Nrf2, HO-1, SOD2, and NQO1 at the gene or protein level compared to those of the ZEA+LPS group. The measurement of tight junction-related genes and proteins showed QUE up-regulated the expression of Claudin, ZO-1, and Occludin genes and proteins more than in the ZEA+LPS group. QUE addition reduced the rate of apoptosis more than that in the ZEA+LPS group. The expressions of Bcl-2 and Bax were examined at the gene level, and QUE addition significantly reduced the Bax gene expression level compared to that of the ZEA+LPS group, but there was no apparent variation in the expression level of Bcl-2. In summary, QUE can alleviate the combined toxic effects of ZEA and LPS on IPEC-J2 cells via modulating the Nrf2 signaling pathway, up-regulating the expression of antioxidative genes, and enhancing the intestinal barrier.


Assuntos
Zearalenona , Humanos , Animais , Suínos , Zearalenona/metabolismo , Quercetina/farmacologia , Lipopolissacarídeos/farmacologia , Fator 2 Relacionado a NF-E2/genética , Fator 2 Relacionado a NF-E2/metabolismo , Proteína X Associada a bcl-2/metabolismo , Linhagem Celular , Transdução de Sinais , Antioxidantes/farmacologia , Antioxidantes/metabolismo , Células Epiteliais
12.
Sci Total Environ ; 905: 167073, 2023 Dec 20.
Artigo em Inglês | MEDLINE | ID: mdl-37714341

RESUMO

Agricultural and anthropogenic activities release high ammonia levels into aquatic ecosystems, severely affecting aquatic organisms. Penaeid shrimp can survive high ammonia stress conditions, but the underlying molecular mechanisms are unknown. Here, total hemocyanin and oxyhemocyanin levels decreased in Penaeus vannamei plasma under high ammonia stress. When shrimp were subjected to high ammonia stress for 12 h, 24 hemocyanin (HMC) derived peptides were identified in shrimp plasma, among which one peptide, designated as HMCs27, was chosen for further analysis. Shrimp survival was significantly enhanced after treatment with the recombinant protein of HMCs27 (rHMCs27), followed by high ammonia stress. Transcriptome analysis of shrimp hepatopancreas after treatment with or without rHMCs27 followed by high ammonia stress revealed 973 significantly dysregulated genes, notable among which were genes involved in oxidation and metabolism, such as cytochrome C, catalase (CAT), isocitrate dehydrogenase, superoxide dismutase (SOD), trypsin, chymotrypsin, glutathione peroxidase, glutathione s-transferase (GST), and alanine aminotransferase (ALT). In addition, levels of key biochemical indicators, such as SOD, CAT, and total antioxidant capacity (T-AOC), were significantly enhanced, whereas hepatopancreas malondialdehyde levels and plasma pH, NH3, GST, and ALT levels were significantly decreased after rHMCs27 treatment followed by high ammonia stress. Moreover, high ammonia stress induced hepatopancreas tissue injury and apoptosis, but rHMCs27 treatment ameliorated these effects. Collectively, the current study revealed that in response to high ammonia stress, shrimp generate functional peptides, such as peptide HMCs27 from hemocyanin, which helps to attenuate the ammonia toxicity by enhancing the antioxidant system and the tricarboxylic acid cycle to decrease plasma NH3 levels and pH.


Assuntos
Antioxidantes , Penaeidae , Animais , Antioxidantes/metabolismo , Estresse Fisiológico , Hemocianinas/metabolismo , Hemocianinas/farmacologia , Penaeidae/fisiologia , Amônia/metabolismo , Ecossistema , Superóxido Dismutase/metabolismo , Peptídeos/metabolismo
13.
PeerJ ; 11: e15968, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37641594

RESUMO

Drought and soil salinization are global environmental issues, and Elymus nutans play an important role in vegetation restoration in arid and saline environments due to their excellent stress resistance. In the process of vegetation restoration, the stage from germination to seedling growth of forage is crucial. This experiment studied the effects of PEG-6000 simulated drought stress and NaCl simulated salinization stress on the germination of E. nutans seeds, and explored the growth of forage seedlings from sowing to 28 days under drought and salinization stress conditions. The results showed that under the same environmental water potential, there were significant differences in responses of seed germination, seedling growth, organic carbon, total nitrogen and total phosphorus of above-ground and underground parts of E. nutans to drought stress and salinization stress. Using the membership function method to comprehensively evaluate the seed germination and seedling indicators of E. nutans, it was found that under the same environmental water potential, E. nutans was more severely affected by drought stress during both the seed germination and seedling growth stages. E. nutans showed better salt tolerance than drought resistance.


Assuntos
Elymus , Plântula , Secas , Germinação , Sementes , Estresse Salino , Água
14.
Toxins (Basel) ; 15(3)2023 03 21.
Artigo em Inglês | MEDLINE | ID: mdl-36977123

RESUMO

Aflatoxin B1 (AFB1), a typical fungal toxin found in feed, is highly carcinogenic. Oxidative stress is one of the main ways it exerts its toxicity; therefore, finding a suitable antioxidant is the key to reducing its toxicity. Astaxanthin (AST) is a carotenoid with strong antioxidant properties. The aim of the present research was to determine whether AST eases the AFB1-induced impairment in IPEC-J2 cells, and its specific mechanism of action. AFB1 and AST were applied to IPEC-J2 cells in different concentrations for 24 h. The AST (80 µM) significantly prevented the reduction in the IPEC-J2 cell viability that was induced by AFB1 (10 µM). The results showed that treatment with AST attenuated the AFB1-induced ROS, and cytochrome C, the Bax/Bcl2 ratio, Caspase-9, and Caspase-3, which were all activated by AFB1, were among the pro-apoptotic proteins which were diminished by AST. AST activates the Nrf2 signaling pathway and ameliorates antioxidant ability. This was further evidenced by the expression of the HO-1, NQO1, SOD2, and HSP70 genes were all upregulated. Taken together, the findings show that the impairment of oxidative stress and apoptosis, caused by the AFB1 in the IPEC-J2 cells, can be attenuated by AST triggering the Nrf2 signaling pathway.


Assuntos
Aflatoxina B1 , Antioxidantes , Antioxidantes/farmacologia , Antioxidantes/metabolismo , Aflatoxina B1/toxicidade , Aflatoxina B1/metabolismo , Fator 2 Relacionado a NF-E2/genética , Fator 2 Relacionado a NF-E2/metabolismo , Linhagem Celular , Estresse Oxidativo , Apoptose , Transdução de Sinais
15.
Fish Shellfish Immunol ; 134: 108571, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36736844

RESUMO

The cellular transcription factors are known to play important roles in virus infection. The present study cloned and characterized a transcription factor CCAAT/Enhancer-binding protein homolog from the shrimp Penaeus vannamei (designates as PvCEBP), and explored its potential functions in white spot syndrome virus (WSSV) infection. PvCEBP has an open reading frame (ORF) of 864 bp encoding a putative protein of 287 amino acids, which contained a highly C-terminal conserved bZIP domain. Phylogenetic tree analysis showed that PvCEBP was evolutionarily clustered with invertebrate CEBPs and closely related to the CEBP of Homarus americanus. Quantitative real-time PCR (qPCR) analysis revealed that PvCEBP was expressed in all examined shrimp tissues, with transcript levels increased in shrimp hemocytes and gill upon WSSV challenge. Furthermore, knockdown of PvCEBP mediated by RNA interference significantly decreased the expression of WSSV genes and viral loads, while enhanced the shrimp survival rate under WSSV challenge. In silico prediction and reporter gene assays demonstrated that PvCEBP could activate the promoter activity of the viral immediate-early gene ie1. Collectively, our findings suggest that PvCEBP is annexed by WSSV to promote its propagation by enhancing the expression of viral immediate-early genes.


Assuntos
Penaeidae , Vírus da Síndrome da Mancha Branca 1 , Animais , Fatores de Transcrição/genética , Penaeidae/genética , Vírus da Síndrome da Mancha Branca 1/fisiologia , Filogenia , Sequência de Aminoácidos , Proteínas de Artrópodes/genética
16.
J Anim Physiol Anim Nutr (Berl) ; 107(3): 830-838, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-36224721

RESUMO

Oils provide a considerable amount of energy to the swine diet, but they are prone to lipid oxidation if not properly preserved. Consumption of oxidized oils can adversely affect the animal organism and even the offspring. This study investigated the impact of oxidized soybean oil in the diets of sows from 107 days gestation to 21 days of lactation on the performance of sows and jejunum health of suckling piglets. Sixteen sows were randomly allocated into two groups: one group (n = 8) was fed with the fresh soybean oil (FSO) diet, and another group (n = 8) was treated with the oxidized soybean oil (OSO) diet. Dietary oxidized soybean oil does not affect sow performance. Antioxidant enzyme activity in the milk was reduced significantly in the OSO group, such as the superoxide dismutase (SOD), total antioxidant capacity (T-AOC), and catalase (CAT) activities (p < 0.05). On Day 21, oxidized soybean oil increased tumor necrosis factor-α (TNF-α), interleukin 6 (IL-6), and interleukin 8 (IL-8) levels in sow milk and the concentrations of TNF-α and IL-8 cytokines in plasma (p < 0.05). Suckling piglets from sows fed on OSO showed a trend towards increased IL-6 and TNF-α in plasma (p < 0.1). The mRNA expression of interleukin 1ß (IL-1ß) was augmented, whereas interleukin 10 (IL-10) was decreased, and zonula occludens-1 (ZO-1) had a tendency to be down-regulated in OSO treatment. This study revealed that the OSO of feed decreased the antioxidant capacity of milk, further contributing to the inflammatory response in the jejunum of suckling piglets.


Assuntos
Antioxidantes , Suplementos Nutricionais , Animais , Suínos , Feminino , Antioxidantes/metabolismo , Interleucina-8/metabolismo , Interleucina-8/farmacologia , Óleo de Soja/farmacologia , Interleucina-6/metabolismo , Interleucina-6/farmacologia , Fator de Necrose Tumoral alfa/metabolismo , Jejuno , Dieta/veterinária , Lactação , Leite/metabolismo , Ração Animal/análise
17.
Microbiome ; 10(1): 213, 2022 12 05.
Artigo em Inglês | MEDLINE | ID: mdl-36464721

RESUMO

BACKGROUND: Numerous microorganisms are found in aquaculture ponds, including several pathogenic bacteria. Infection of cultured animals by these pathogens results in diseases and metabolic dysregulation. However, changes in the metabolic profiles that occur at different infection stages in the same ponds and how these metabolic changes can be modulated by exogenous metabolites in Penaeus vannamei remain unknown. RESULTS: Here, we collected gastrointestinal tract (GIT) samples from healthy, diseased, and moribund P. vannamei in the same aquaculture pond for histological, metabolic, and transcriptome profiling. We found that diseased and moribund shrimp with empty GITs and atrophied hepatopancreas were mainly infected with Vibrio parahaemolyticus and Vibrio harveyi. Although significant dysregulation of crucial metabolites and their enzymes were observed in diseased and moribund shrimps, diseased shrimp expressed high levels of taurine and taurine metabolism-related enzymes, while moribund shrimp expressed high levels of hypoxanthine and related metabolism enzymes. Moreover, a strong negative correlation was observed between taurine levels and the relative abundance of V. parahaemolyticus and V. harveyi. Besides, exogenous taurine enhanced shrimp survival against V. parahaemolyticus challenge by increasing the expression of key taurine metabolism enzymes, mainly, cysteine dioxygenase (CDO) and cysteine sulfinic acid decarboxylase (CSD). CONCLUSIONS: Our study revealed that taurine metabolism could be modulated by exogenous supplementation to improve crustacean immune response against pathogenic microbes. Video Abstract.


Assuntos
Penaeidae , Vibrio , Animais , Alimentos Marinhos , Aquicultura , Antibacterianos/farmacologia
18.
Int J Mol Sci ; 23(18)2022 Sep 10.
Artigo em Inglês | MEDLINE | ID: mdl-36142431

RESUMO

Acute hepatopancreatic necrosis disease (AHPND), caused by a unique strain of Vibrio parahaemolyticus (Vp (AHPND)), has become the world's most severe debilitating disease in cultured shrimp. Thus far, the pathogenesis of AHPND remains largely unknow. Herein, in Litopenaeus vannamei, we found that a Vp (AHPND) infection significantly increased the expression of lipid droplets (LDs) protein LvPerilipin, as well as promoted the formation of LDs. In addition, the knockdown of LvPerilipin increased the shrimp survival rate in response to the Vp (AHPND) infection, and inhibited the proliferation of Vp (AHPND). Furthermore, we demonstrated that LvPerilipin depletion could increase the production of reactive oxygen species (ROS), which may be responsible for the decreased Vp (AHPND) proliferation. Taken together, our current data for the first time reveal that the shrimp lipid droplets protein Perilipin is involved in the pathogenesis of Vp (AHPND) via promoting LDs accumulation and decreasing ROS production.


Assuntos
Penaeidae , Vibrio parahaemolyticus , Animais , Gotículas Lipídicas , Perilipina-1 , Espécies Reativas de Oxigênio , Vibrio parahaemolyticus/fisiologia
19.
Fish Shellfish Immunol ; 128: 380-388, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-35934241

RESUMO

White spot syndrome virus (WSSV) can cause a contagious, high virulent and pandemic disease for crustaceans, especially shrimps. However, the molecular mechanism of WSSV pathogenesis remains unclear. Flotillins are lipid raft-associated proteins, which mainly include flotillin-1 and flotillin-2. They are involved in the formation of large heteromeric protein complexes engaged in diverse signalling pathways at the membrane-cytosol interface. They defined a clathrin-independent endocytic pathway in mammalian cells. Our previous studies suggested that shrimp flotillin-2 might mediate endocytosis involved in WSSV infection. To further explore the function of shrimp flotillin, a flotillin-1 homologous, Lvflotillin-1A was identified and characterized in Litopenaeus vanamei. The transcription of Lvflotillin-1A showed a significant decline at 12h post-infection, followed by complete recovery and a slight up-regulation after the WSSV challenge. Gene silencing revealed that inhibition of Lvflotillin-1A raised the virus infection, suggesting Lvflotillin-1A might play an important role in shrimp immunity. Furthermore, co-immunoprecipitation and immunofluorescence illustrated that Lvflotillin-1A and Lvflotillin-2 could form hetero-oligomers, and co-expression promoted the accumulation of intracellular vesicles. The study revealed that WSSV might up-regulate Lvflotillin-2 expression and alter the subcellular location of Lvflotillin-1 protein to facilitate virus infection. These results will provide information for understanding the interaction between WSSV and shrimp.


Assuntos
Penaeidae , Vírus da Síndrome da Mancha Branca 1 , Animais , Proteínas de Artrópodes , Clatrina , Mamíferos/metabolismo , Microdomínios da Membrana/metabolismo , Vírus da Síndrome da Mancha Branca 1/fisiologia
20.
Int J Mol Sci ; 23(15)2022 Jul 25.
Artigo em Inglês | MEDLINE | ID: mdl-35897756

RESUMO

For DNA viruses, the immediate-early (IE) proteins are generally essential regulators that manipulate the host machinery to support viral replication. Recently, IE1, an IE protein encoded by white spot syndrome virus (WSSV), has been demonstrated to function as a transcription factor. However, the target genes of IE1 during viral infection remain poorly understood. Here, we explored the host target genes of IE1 using RNAi coupled with transcriptome sequencing analysis. A total of 429 differentially expressed genes (DEGs) were identified from penaeid shrimp, of which 284 genes were upregulated and 145 genes were downregulated after IE1 knockdown. GO and KEGG pathway enrichment analysis revealed the identified DEGs are significantly enriched in the minichromosome maintenance (MCM) complex and DNA replication, indicating that IE1 plays a critical role in DNA replication control. In addition, it was found that Penaeus vannamei MCM complex genes were remarkably upregulated after WSSV infection, while RNAi-mediated knockdown of PvMCM2 reduced the expression of viral genes and viral loads at the early infection stage. Finally, we demonstrated that overexpression of IE1 promoted the expression of MCM complex genes as well as cellular DNA synthesis in insect High-Five cells. Collectively, our current data suggest that the WSSV IE1 protein is a viral effector that modulates the host DNA replication machinery for viral replication.


Assuntos
Proteínas Imediatamente Precoces , Penaeidae , Vírus da Síndrome da Mancha Branca 1 , Animais , Replicação do DNA/genética , Perfilação da Expressão Gênica , Regulação Viral da Expressão Gênica , Proteínas Imediatamente Precoces/genética , Proteínas Imediatamente Precoces/metabolismo , Penaeidae/metabolismo , Transcriptoma , Vírus da Síndrome da Mancha Branca 1/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...