Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 495
Filtrar
1.
Biomedicines ; 12(6)2024 May 23.
Artigo em Inglês | MEDLINE | ID: mdl-38927356

RESUMO

BACKGROUND: Premature ventricular complexes (PVCs) are common electrocardiographic abnormalities and may be a prognosticator in predicting mortality in patients with structurally normal hearts or chronic heart diseases. Whether PVC burden was associated with mortality in patients with chronic atrial fibrillation (AF) remained unknown. We investigated the prognostic value of PVC burden in patients with persistent AF. METHODS: A retrospective analysis of 24 h Holter recordings of 1767 patients with persistent AF was conducted. Clinical characteristics, 24 h average heart rate (HR), and PVC measures, including 24 h PVC burden and the presence of consecutive PVCs (including any PVC couplet, triplet, or non-sustained ventricular tachycardia) were examined for the prediction of all-cause and cardiovascular mortality using the Cox proportional hazards model. RESULTS: After a median follow-up time of 30 months, 286 (16%) patients died and 1481 (84%) patients survived. Multivariate analysis revealed that age, heart failure, stroke, angiotensin-converting enzyme inhibitor/angiotensin receptor blocker, beta-blocker, digoxin, oral anticoagulant use, and estimated glomerular filtration rate were significant baseline predictors of all-cause mortality and cardiovascular mortality. Twenty-four-hour PVC burden and the presence of consecutive PVCs were significantly associated with all-cause and cardiovascular mortality after adjusting for significant clinical factors. When compared to the first quartile of PVC burden (<0.003%/day), the highest quartile (>0.3%/day) was significantly associated with an increased risk of all-cause mortality (hazard ratio, 2.46; 95% CI, 1.77-3.42) and cardiovascular mortality (hazard ratio: 2.67; 95% CI, 1.76-4.06). CONCLUSIONS: Twenty-four-hour PVC burden is independently associated with all-cause and cardiovascular mortality in patients with persistent AF.

2.
Blood Cells Mol Dis ; 108: 102862, 2024 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-38889659

RESUMO

This retrospective study at Beijing Children's Hospital (2020-2023) analyzed surgical procedures and complications in 24 pediatric hemophilia patients undergoing Totally Implantable Venous Access Port (TIVAP) insertion, primarily in the right jugular vein (RJV). We detailed the surgical process, including patient demographics and intraoperative imaging use. The choice of the RJV for TIVAP placement was influenced by its larger diameter and superficial anatomical position, potentially reducing risks like thrombosis and infection. Our findings support the RJV as a safer alternative for port placement in pediatric patients, aligning with current literature. Statistical analysis revealed no significant correlation between complications and baseline characteristics like weight and diagnosis type. However, the length of hospital stay and implant brand were significant risk factors for catheter or port displacement and removal. The limited patient number may introduce bias, suggesting a need for further studies with larger samples. Despite a 14.7 %-33 % complication rate and 5 port removals, the advantages of TIVAP, including reliable venous access, reduced discomfort, and treatment convenience, were evident. Most complications improved with symptomatic treatment, and there were no deaths due to port-related complications, underscoring the impact of TIVAP on improving pediatric hemophilia treatment.

3.
Clin Kidney J ; 17(6): sfae124, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38915441

RESUMO

The ANKFY1 gene encodes a protein that belongs to double zinc finger proteins involved in endocytosis. Only one family with steroid-resistant nephrotic syndrome has been reported carrying a homozygous variant in ANKFY1 so far. Here we describe the second case where a 13-year-old boy presented with infantile-onset proteinuria and movement disorder. Whole-exome sequencing showed compound heterozygous variants (NM_001330063.2: c.2753C>G; p.Ser918Ter, and c.3287-11_3287-10del) in ANKFY1. In vitro functional study revealed the two variants led to reduced protein expression level of ANKFY1. This is the first case of co-existence of renal and nervous system phenotypes in a child with variants in ANKFY1, suggesting that bi-allelic variants in ANKFY1 might be associated with a new neuro-renal syndrome.

4.
Int Wound J ; 21(2): e14710, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38838072

RESUMO

To explore the knowledge, attitudes and practice (KAP) status of preventing pressure injury among clinical nurses working in paediatric ICU, and to examine factors affecting nurses' KAP. A questionnaire survey was conducted among 1906 paediatric ICU nurses in 18 children's hospitals by convenience sampling method. The survey tools were self-designed general data questionnaire, KAP questionnaire for the prevention of pressure injury and the influencing factors were analysed. A total of 1906 valid questionnaires were collected. The scores of overall KPA, knowledge, attitudes, and practice were 101.24 ± 17.22, 20.62 ± 9.63, 54.93 ± 5.81and 25.67 ± 6.76, respectively. The results of multiple linear regression analysis showed that education background, professional title, age and specialist nurse were the main influencing factor of nurses' knowledge of preventing PI; education background and specialist nurse were the main influencing factors of nurses' attitudes of preventing PI; knowledge, attitudes and education background were the main influencing factors of nurses' practice of preventing PI. Paediatric ICU nurses have a positive attitude towards the prevention of PI, but their knowledge and practice need to be improved. According to different characteristics of nurses, nursing managers should carry out training on the knowledge of prevention of PI to establish a positive attitude, so as to drive the change of nursing practice and improve the nursing practice level of ICU nurses to prevent of PI.


Assuntos
Conhecimentos, Atitudes e Prática em Saúde , Unidades de Terapia Intensiva Pediátrica , Úlcera por Pressão , Humanos , Úlcera por Pressão/prevenção & controle , Feminino , Masculino , Inquéritos e Questionários , Adulto , Atitude do Pessoal de Saúde , Recursos Humanos de Enfermagem Hospitalar/psicologia , Enfermagem de Cuidados Críticos/métodos , Pessoa de Meia-Idade , Adulto Jovem , Competência Clínica/estatística & dados numéricos
5.
Cancer Cell Int ; 24(1): 197, 2024 Jun 04.
Artigo em Inglês | MEDLINE | ID: mdl-38834986

RESUMO

BACKGROUND: Syntaxin6 (STX6) is a SNARE (Soluble N-ethylmaleimide-sensitive factor attachment protein receptors) protein complex located in the trans-Golgi network and endosomes, which is closely associated with a variety of intracellular membrane transport events. STX6 has been shown to be overexpressed in a variety of human malignant tumors such as esophageal, colorectal, and renal cell carcinomas, and participates in tumorigenesis and development. METHODS: Based on clinical public database and clinical liver samples analysis, the expression of STX6 in hepatocellular carcinoma (HCC) tissues was investigated. The effects of STX6 on proliferation, migration and invasion of HCC cell in vitro and in vivo were evaluated through gain- and loss-of-function studies. We further performed RNA-seq analysis and protein interactome analysis, to further decifer the detailed mechanisms of STX6 in the regulation of the JAK-STAT pathway in HCC. RESULTS: STX6 expression was upregulated in HCC tissues and its expression was highly correlated with the high histological grade of the tumor. STX6 promoted HCC cell proliferation, migration and invasion both in vitro and in vivo. Mechanistically, STX6 mediated tumor progression depending on promoting the activation of JAK-STAT signaling pathway. Receptor for activated protein kinase C (RACK1) as an essential adaptor protein mediating STX6 regulation of JAK-STAT pathway. Specifically, STX6 interacted with RACK1 and then recruited signal transducer and activator of transcription 3 (STAT3) to form a protein-binding complex and activates STAT3 transcriptional activity. CONCLUSIONS: This study provided a novel concept that STX6 exerted oncogenic effects by activating the STAT3 signaling pathway, and STX6 might be a promising therapeutic target for HCC.

6.
Plant Direct ; 8(6): e610, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38903415

RESUMO

Chloroplasts play a vital role in plant growth and development, which are the main sites of photosynthesis and the production of hormones and metabolites. Despite their significance, the regulatory mechanisms governing chloroplast development remain unclear. In our investigation, we identified a rice mutant with defective chloroplasts in rice (Oryza sativa L.), named albino lethal 13 (osal13), which displayed a distinct albino phenotype in leaves, ultimately resulting in seedling lethality. Molecular cloning revealed that OsAL13 encodes a novel rice protein with no homologous gene or known conserved domain. This gene was located in the chloroplast and exhibited constitutive expression in various tissues, particularly in green tissues and regions of active cell growth. Our study's findings reveal that RNAi-mediated knockdown of OsAL13 led to a pronounced albino phenotype, reduced chlorophyll and carotenoid contents, a vesicle chloroplast structure, and a decrease in the expression of chloroplast-associated genes. Consequently, the pollen fertility and seed setting rate were lower compared with the wild type. In contrast, the overexpression of OsAL13 resulted in an increased photosynthetic rate, a higher total grain number per panicle, and enhanced levels of indole-3-acetic acid (IAA) in the roots and gibberellin A3 (GA3) in the shoot. These outcomes provide new insights on the role of OsAL13 in regulating chloroplast development in rice.

7.
J Thorac Dis ; 16(5): 3338-3349, 2024 May 31.
Artigo em Inglês | MEDLINE | ID: mdl-38883659

RESUMO

Background: The significant progress has been made in targeted therapy for lung adenocarcinoma (LUAD) in the past decade. Only few targeted therapeutics have yet been approved for the treatment of lung squamous cell carcinoma (LUSC). Several higher frequency of gene alterations are identified as potentially actionable in LUSC. Our work aimed to explore the complex interplay of multiple genetic alterations and pathways contributing to the pathogenesis of LUSC, with a very low frequency of a single driver molecular alterations to develop more effective therapeutic strategies in the future. Methods: We retrospectively analyzed the targeted next-generation sequencing (NGS) data (approximately 600 genes) of 335 patients initially diagnosed with non-small cell lung cancer (NSCLC) at our institution between January 2019 and March 2023 and explored the somatic genome alteration difference between LUSC and LUAD. Results: We analyzed that the presence of loss-of-function (LoF) mutations (nonsense, frameshift, and splice-site variants) in histone-lysine N-methyltransferase 2D (KMT2D) was much more prevalent in LUSC (11/53, 20.8%) than in LUAD (6/282, 2.1%). Moreover, our data indicated TP53 co-mutated with KMT2D LoF in 90.9% (10/11) LUSC and 33.3% (2/6) LUAD. Notably, the mutation allele fraction (MAF) of KMT2D was very similar to that of TP53 in the co-mutated cases. Genomic profiling of driver gene mutations of NSCLC showed that 81.8% (9/11) of the patients with LUSC with KMT2D LoF mutations had PIK3CA amplification and/or FGFR1 amplification. Conclusions: Our results prompted that somatic LoF mutations of KMT2D occur frequently in LUSC, but are less frequent in LUAD and therefore may potentially contribute to the pathogenesis of LUSC. Concurrent TP53 mutations, FGFR1 amplification, and PIK3CA amplification are very common in LUSC cases with KMT2D LoF mutations. It needs more deeper investigation on the interplay of the genes and pathways and uses larger cohorts in the future.

8.
Artigo em Inglês | MEDLINE | ID: mdl-38818918

RESUMO

A malignant tumor is a frequent and common disease that severely threatens human health. Many mechanisms, such as cell signaling pathway, anti-apoptosis mechanism, cell stemness, metabolism, and cell phenotype, have been studied to explain the reasons for chemotherapy, radioresistance, and tumor recurrences in antitumor treatment. Cancer stem cells (CSCs) are important tumor cell subclasses that can potentially organize and regulate stem cell properties. Growing evidence suggests that CSCs can initiate tumors and constitute a significant factor in metastasis, recurrence, and treatment resistance. The inability to completely target and remove CSCs is a considerable obstacle in tumor treatment. Therefore, drugs and therapeutic strategies that can effectively intervene with CSCs are essential for the treatment of different tumor types. However, the current strategies and efficacy of targeted elimination of CSCs are very limited. Oxidative stress has been recognized to play a crucial role in cancer pathophysiology. Moreover, reactive oxygen species (ROS) production and imbalance of the built-in cellular antioxidant defense system are hallmarks of tumor and cancer etiology. The current paper will focus on the regulation and mechanism behind oxidative stress in tumors and cancer stem cells and its tumor therapy applications. Additionally, the article discusses the role of CSCs in causing tumor treatment resistance and recurrence based on a redox perspective. The study also emphasizes that targeted modulation of oxidative stress in CSCs has great potential in tumor therapy, providing novel prospects for tumor therapy.

9.
Clin Genet ; 2024 May 23.
Artigo em Inglês | MEDLINE | ID: mdl-38780184

RESUMO

Emerging research has demonstrated that genomic alterations disrupting topologically associated domains (TADs) and chromatin interactions underlie the pathogenic mechanisms of specific copy number variants (CNVs) in neurodevelopmental disorders. We report two patients with a de novo deletion and a duplication in chromosome 4q31, potentially causing FBX-related neurodevelopmental syndrome by affecting the regulatory region of FBXW7. High-throughput chromosome conformation capture (Hi-C) analysis using available capture data in neural progenitor cells revealed the rewiring of the TAD boundary close to FBXW7. Both patients exhibited facial dysmorphisms, cardiac and limb abnormalities, and neurodevelopmental delays, showing significant clinical overlap with previously reported FBXW7-related features. We also included an additional 10 patients with CNVs in the 4q31 region from the literature and the DECIPHER database for Hi-C analysis, which confirmed that disruption of the regulatory region of FBXW7 likely contributes to the developmental defects observed in these patients.

10.
Artigo em Inglês | MEDLINE | ID: mdl-38780291

RESUMO

ABSTRACT: Vascular calcification (VC), a major complication in chronic kidney disease (CKD), is predominantly driven by osteoblastic differentiation. Recent studies have highlighted the crucial role of microRNAs in CKD's pathogenesis. Here, our research focused on the effects of miR-204-5p and its molecular mechanisms within VC. We initially found a notable decrease in miR-204-5p levels in human aortic vascular smooth muscle cells stimulated with inorganic phosphate, using this as a VC model in vitro. Following the overexpression of miR-204-5p, a decrease in VC was observed, as indicated by alizarin red S staining and measurements of calcium content. This decrease was accompanied by lower levels of the osteogenic marker, runt-related transcription factor 2, and higher levels of α-smooth muscle actin, a marker of contractility. Further investigation showed that calcium/calmodulin-dependent protein kinase 1 (CAMK1), which is a predicted target of miR-204-5p, promotes VC. Conversely, overexpressing miR-204-5p reduced VC by suppressing CAMK1 activity. Overexpressing miR-204-5p also effectively mitigated aortic calcification in an in vivo rat model. In summary, our research indicated that targeting the miR-204-5p/CAMK1 pathway could be a viable strategy for mitigating VC in CKD patients.


Assuntos
Diferenciação Celular , MicroRNAs , Músculo Liso Vascular , Osteogênese , Calcificação Vascular , MicroRNAs/genética , MicroRNAs/metabolismo , Humanos , Calcificação Vascular/genética , Calcificação Vascular/metabolismo , Calcificação Vascular/patologia , Músculo Liso Vascular/metabolismo , Músculo Liso Vascular/patologia , Osteogênese/genética , Animais , Ratos , Aorta/patologia , Miócitos de Músculo Liso/metabolismo , Masculino , Células Cultivadas , Ratos Sprague-Dawley
11.
Sci Total Environ ; 931: 172789, 2024 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-38688368

RESUMO

Organic and mineral fertilization increase crop productivity, but their combined effects on soil quality index (SQI) and ecosystem multifunctionality (EMF, defined as the capacity of soils to simultaneously provide multiple functions and services) are not clear. We conducted a 13-year field trial in North China Plain to examine how five maize-derived organic fertilizers (straw, manure, compost, biogas residue, and biochar) at equal C input rate (3.2 t C ha-1), with or without nitrogen (N) fertilization influenced topsoil (0-15 cm) physico-chemical properties, activities of enzymes responsible for carbon (C), N, and phosphorus (P) cycling, as well as SQI and soil EMF. Organic fertilizers with or without N increased SQI by 51-187 % and EMF by 31-351 % through the enhancement of soil physical (mean weight diameter of soil aggregates) and chemical properties (C, N, and P contents) as well as C, N, and P acquisition enzyme activities, albeit the biochar effects were of minor importance. N application increased EMF compared to soil without N. Soil quality increased with EMF. Random forest analysis revealed that microbial biomass C and N, available P, permanganate oxidizable C, dissolved organic C and N, mean weight diameter of aggregates, hot water extractable C, and electrical conductivity were the main contributions to soil EMF. We conclude that application of maize-derived organic fertilizers, especially compost and straw, with optimal N fertilization is a plausible strategy to increase SQI and EMF under a wheat/maize system.


Assuntos
Ecossistema , Fertilizantes , Nitrogênio , Solo , Solo/química , Nitrogênio/análise , China , Agricultura/métodos , Fósforo/análise , Zea mays , Carbono/análise
12.
Nat Commun ; 15(1): 3205, 2024 Apr 13.
Artigo em Inglês | MEDLINE | ID: mdl-38615015

RESUMO

Defence against pathogens relies on intracellular nucleotide-binding, leucine-rich repeat immune receptors (NLRs) in plants. Hormone signaling including abscisic acid (ABA) pathways are activated by NLRs and play pivotal roles in defence against different pathogens. However, little is known about how hormone signaling pathways are activated by plant immune receptors. Here, we report that a plant NLR Sw-5b mimics the behavior of the ABA receptor and directly employs the ABA central regulator PP2C-SnRK2 complex to activate an ABA-dependent defence against viral pathogens. PP2C4 interacts with and constitutively inhibits SnRK2.3/2.4. Behaving in a similar manner as the ABA receptor, pathogen effector ligand recognition triggers the conformational change of Sw-5b NLR that enables binding to PP2C4 via the NB domain. This receptor-PP2C4 binding interferes with the interaction between PP2C4 and SnRK2.3/2.4, thereby releasing SnRK2.3/2.4 from PP2C4 inhibition to activate an ABA-specific antiviral immunity. These findings provide important insights into the activation of hormone signaling pathways by plant immune receptors.


Assuntos
Ácido Abscísico , Transdução de Sinais , Inibição Psicológica , Domínios Proteicos , Hormônios
13.
Front Cardiovasc Med ; 11: 1301140, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38510200

RESUMO

Background: Previous studies have shown that global constructive work (CW) and wasted work (WW) predict response to cardiac resynchronization therapy (CRT). This study evaluated the predictive value of regional CW and WW for reverse remodeling and clinical outcomes after CRT. Methods: We performed a prospective study involving 134 CRT candidates with left bundle branch block and left ventricular ejection fraction ≤35%. Global and regional CW and WW were calculated using pressure-strain loop analysis. CRT response was defined by reverse remodeling as a reduction of ≥15% in left ventricular end-systolic volume after six months. Results: At six-month follow-up, 92 (69%) patients responded to CRT. Of the regional CW and WW measures, lateral wall (LW) CW and septal WW were most strongly and significantly correlated with reverse remodeling. At multivariate analysis, LW CW and septal WW were both independent determinants of reverse remodeling. When LW CW and septal WW were included in the model, global CW and WW were not independently associated with reverse remodeling. LW CW and septal WW predicted reverse remodeling with an area under the curve (AUC) of 0.783 (95% CI: 0.700-0.866) and 0.737 (95% CI: 0.644-0.831), respectively. Using both variables increased the AUC to 0.832 (95% CI: 0.755-0.908). Both LW CW ≤878 mmHg% (HR 2.01; 95% CI: 1.07-3.79) and septal WW ≤181 mmHg% (HR 2.60; 95% CI: 1.38-4.90) were significant predictors of combined death and HF hospitalization at two-year follow-up. Conclusion: LW CW and septal WW before CRT are important determinants of reverse remodeling and clinical outcomes.

14.
J Hazard Mater ; 469: 134027, 2024 May 05.
Artigo em Inglês | MEDLINE | ID: mdl-38508110

RESUMO

Low-cost, low-energy extraction of heavy metal(loid)s (HMs) from hazardous gypsum cake is the goal of the metallurgical industry to mitigate environmental risks and carbon emissions. However, current extracting routes of hydrometallurgy often suffer from great energy inputs and substantial chemical inputs. Here, we report a novel solid-like approach with low energy consumption and chemical input to extract HMs by thin films under ambient conditions. Through constructing a nanoscale sulfuric acid film (NSF) of ∼50 nm thickness on the surface of arsenic-bearing gypsum (ABG), 99.6% of arsenic can be removed, surpassing the 50.3% removal in bulk solution. In-situ X-ray diffraction, infrared spectral, and ab initio molecular dynamics (AIMD) simulations demonstrate that NSF plays a dual role in promoting the phase transformation from gypsum to anhydrite and in changing the ionic species to prevent re-doping in anhydrite, which is not occurred in bulk solutions. The potential of the NSF is further validated in extracting other heavy metal(loid)s (e.g., Cu, Zn, and Cr) from synthetic and actual gypsum cake. With energy consumption and costs at 1/200 and 1/10 of traditional hydrometallurgy separately, this method offers an efficient and economical pathway for extracting HMs from heavy metal-bearing waste and recycling industrial solid waste.

15.
J Sci Food Agric ; 2024 Mar 24.
Artigo em Inglês | MEDLINE | ID: mdl-38523343

RESUMO

BACKGROUND: Optimizing biochar application is vital for enhancing crop production and ensuring sustainable agricultural production. A 3-year field experiment was established to explore the effects of varying the biochar application rate (BAR) on crop growth, quality, productivity and yields. BAR was set at 0, 10, 50 and 100 t ha-1 in 2018; 0, 10, 25, 50 and 100 t ha-1 in 2019; and 0, 10, 25 and 30 t ha-1 in 2020. Crop quality and growth status and production were evaluated using the dynamic technique for order preference by similarity to ideal solution with the entropy weighted method (DTOPSIS-EW), principal component analysis (PCA), membership function analysis (MFA), gray relation analysis (GRA) and the fuzzy Borda combination evaluation method. RESULTS: Low-dose BAR (≤ 25 t ha-1 for cotton; ≤ 50 t ha-1 for sugar beet) effectively increased biomass, plant height, leaf area index (LAI), water and fertility (N, P and K) productivities, and yield. Biochar application increased the salt absorption and sugar content in sugar beet, with the most notable increases being 116.45% and 20.35%, respectively. Conversely, BAR had no significant effect on cotton fiber quality. The GRA method was the most appropriate for assessing crop growth and quality. The most indicative parameters for reflecting cotton and sugarbeet growth and quality status were biomass and LAI. The 10 t ha-1 BAR consistently produced the highest scores and was the most economically viable option, as evaluated by DTOPSIS-EW. CONCLUSION: The optimal biochar application strategy for improving cotton and sugar beet cultivation in Xinjiang, China, is 10 t ha-1 biochar applied continuously. © 2024 Society of Chemical Industry.

16.
Front Immunol ; 15: 1362459, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38482014

RESUMO

Inflammation is an important immune response of the body. It is a physiological process of self-repair and defense against pathogens taken up by biological tissues when stimulated by damage factors such as trauma and infection. Inflammation is the main cause of high morbidity and mortality in most diseases and is the physiological basis of the disease. Targeted therapeutic strategies can achieve efficient toxicity clearance at the inflammatory site, reduce complications, and reduce mortality. Sphingosine-1-phosphate (S1P), a lipid signaling molecule, is involved in immune cell transport by binding to S1P receptors (S1PRs). It plays a key role in innate and adaptive immune responses and is closely related to inflammation. In homeostasis, lymphocytes follow an S1P concentration gradient from the tissues into circulation. One widely accepted mechanism is that during the inflammatory immune response, the S1P gradient is altered, and lymphocytes are blocked from entering the circulation and are, therefore, unable to reach the inflammatory site. However, the full mechanism of its involvement in inflammation is not fully understood. This review focuses on bacterial and viral infections, autoimmune diseases, and immunological aspects of the Sphks/S1P/S1PRs signaling pathway, highlighting their role in promoting intradial-adaptive immune interactions. How S1P signaling is regulated in inflammation and how S1P shapes immune responses through immune cells are explained in detail. We teased apart the immune cell composition of S1P signaling and the critical role of S1P pathway modulators in the host inflammatory immune system. By understanding the role of S1P in the pathogenesis of inflammatory diseases, we linked the genomic studies of S1P-targeted drugs in inflammatory diseases to provide a basis for targeted drug development.


Assuntos
Inflamação , Esfingosina , Esfingosina/análogos & derivados , Humanos , Esfingosina/metabolismo , Inflamação/metabolismo , Lisofosfolipídeos/metabolismo , Transdução de Sinais/fisiologia
17.
Int J Mol Sci ; 25(6)2024 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-38542062

RESUMO

Hepatitis B virus (HBV)-related liver cirrhosis (HBV-LC) presents a substantial mortality and hepatocellular carcinoma (HCC) risk. While antiviral therapy (AVT) is the standard, complete HBV clearance remains elusive and may not reduce the risk of death in patients with decompensated cirrhosis. Silymarin, a centuries-old herbal remedy, has shown promise against HBV infection and as an antifibrosis therapy. This study explores the potential of silymarin combined with AVT to reduce mortality and HCC incidence in patients with HBV-LC. This research, spanning from 2001 to 2019, entailed a multi-institutional retrospective cohort study which included 8447 HBV-LC patients all undergoing AVT. After applying inclusion and exclusion criteria, the study comprised two cohorts: a case cohort receiving silymarin alongside AVT for at least 30 days, and a control cohort on AVT alone. Propensity score matching, based on baseline parameters including HBV-DNA levels, comorbidity, and an important LC medication, namely, non-selective ß-blockers, was employed to ensure balanced groups, resulting in 319 patients in each cohort for subsequent analyses. Overall mortality was the primary outcome, with HCC occurrence as a secondary outcome. Among 319 patients in both cohorts, the case cohort exhibited significant improvements in the international normalized ratio (INR), model for end-stage liver disease (MELD) score and the Charlson comorbidity index (CCI) one year after the index date. A competing risk survival analysis demonstrated superior one-year and two-year mortality outcomes in the case cohort. However, no significant impact on one-year and two-year HCC occurrence was observed in either cohort. The combination of silymarin and AVT in HBV-LC patients demonstrated a synergistic effect, leading to decreased overall mortality and an improved comorbidity index. While the incidence of HCC remained unchanged, our results suggested promising potential for further clinical trials investigating the synergistic role of silymarin in the treatment of HBV-LC.


Assuntos
Carcinoma Hepatocelular , Doença Hepática Terminal , Hepatite B Crônica , Hepatite B , Neoplasias Hepáticas , Humanos , Vírus da Hepatite B/genética , Carcinoma Hepatocelular/patologia , Neoplasias Hepáticas/patologia , Hepatite B Crônica/complicações , Estudos Retrospectivos , Pontuação de Propensão , Doença Hepática Terminal/complicações , Fatores de Risco , Índice de Gravidade de Doença , Cirrose Hepática/complicações , Cirrose Hepática/tratamento farmacológico , Cirrose Hepática/patologia , Hepatite B/complicações , Hepatite B/tratamento farmacológico , Antivirais/uso terapêutico
19.
Mol Carcinog ; 63(5): 874-884, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38353363

RESUMO

Head and neck squamous cell carcinoma (HNSCC) is a prevalent cancer type, marked by a pronounced nerve density within the tumor microenvironment and a high rate of perineural invasion (PNI). Growing evidence suggests that the nervous system plays a vital role in HNSCC progression. Yet, the mechanisms governing cancer-nerve interactions remain largely elusive. Our research revealed that cofilin-1 (CFL1) is significantly overexpressed in HNSCC and correlates with both PNI and unfavorable prognosis. Utilizing multiplex fluorescent immunohistochemistry, we have localized CFL1 chiefly to the nerves adjacent to tumor sites. Significantly, it is the elevated expression of CFL1 in neuronal structures, rather than in the tumor cells, that aligns with diminished patient survival rates. We observed that HNSCC cells induced the expression of neuronal CFL1 and that the conditional knockout of neuronal CFL1 impedes tumor-nerve interactions. Both Gene Ontology functional enrichment analyses and Gene Set Enrichment Analysis demonstrate that CFL1 expression in HNSCC is associated with specific biological processes, including "RIBOSOME," "PROTEASOME," and "cadherin binding." In summary, HNSCC promotes the expression of CFL1 in nerves, which is essential for cancer-nerve interactions. The neuronal CFL1 is associated with PNI and may be a potential molecular prognostic marker of poor survival in HNSCC.


Assuntos
Cofilina 1 , Neoplasias de Cabeça e Pescoço , Carcinoma de Células Escamosas de Cabeça e Pescoço , Humanos , Cofilina 1/genética , Neoplasias de Cabeça e Pescoço/genética , Carcinoma de Células Escamosas de Cabeça e Pescoço/genética , Microambiente Tumoral , Regulação para Cima , Regulação Neoplásica da Expressão Gênica , Neurônios/metabolismo , Neurônios/patologia
20.
Br J Pharmacol ; 181(12): 1843-1856, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38378175

RESUMO

BACKGROUND AND PURPOSE: Our previous studies have found that andrographolide (AGP) alleviates calcific aortic valve disease (CAVD), but the underlying mechanism is unclear. This study explores the molecular target and signal mechanisms of AGP in inhibiting CAVD. EXPERIMENTAL APPROACH: The anti-calcification effects of the aortic valve with AGP treatment were evaluated by alizarin red staining in vitro and ultrasound and histopathological assessment of a high-fat (HF)-fed ApoE-/- mouse valve calcification model. A correlation between the H3 histone lactylation (H3Kla) and calcification was detected. Molecular docking and surface plasmon resonance (SPR) experiments were further used to confirm p300 as a target for AGP. Overexpression (oe) and silencing (si) of p300 were used to verify the inhibitory effect of AGP targeting p300 on the H3Kla in vitro and ex vivo. KEY RESULTS: AGP significantly inhibited calcium deposition in valve interstitial cells (VICs) and ameliorated aortic valve calcification. The multi-omics analysis revealed the glycolysis pathway involved in CAVD, indicating that AGP interfered with lactate production by regulating lactate dehydrogenase A (LDHA). In addition, lactylation, a new post-translational modification, was shown to have a role in promoting aortic valve calcification. Furthermore, H3Kla and H3K9la site were shown to correlate with Runx2 expression inhibition by AGP treatment. Importantly, we found that p300 transferase was the molecular target of AGP in inhibiting H3Kla. CONCLUSIONS AND IMPLICATIONS: Our findings, for the first time, demonstrated that AGP alleviates calcification by interfering with H3Kla via p300, which might be a powerful drug to prevent CAVD.


Assuntos
Estenose da Valva Aórtica , Valva Aórtica , Calcinose , Diterpenos , Histonas , Animais , Humanos , Masculino , Camundongos , Valva Aórtica/patologia , Valva Aórtica/metabolismo , Valva Aórtica/efeitos dos fármacos , Estenose da Valva Aórtica/tratamento farmacológico , Estenose da Valva Aórtica/metabolismo , Estenose da Valva Aórtica/patologia , Calcinose/metabolismo , Calcinose/tratamento farmacológico , Calcinose/patologia , Diterpenos/farmacologia , Diterpenos/química , Proteína p300 Associada a E1A/metabolismo , Proteína p300 Associada a E1A/antagonistas & inibidores , Histonas/metabolismo , Fatores de Transcrição de p300-CBP/metabolismo , Fatores de Transcrição de p300-CBP/antagonistas & inibidores
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...