Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Pharm Pharmacol ; 76(4): 391-404, 2024 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-38289094

RESUMO

OBJECTIVES: Doxorubicin (DOX) is a chemotherapy drug for treating malignant tumours. However, its cardiotoxicity has limited its clinical application. The Radix Aconiti Lateralis Preparata, also known as Fuzi, has been used for treating heart failure. Nevertheless, there is still a deficiency of claeity as to whether the Fuzi polysaccharide (FPS) may prevent the side effects of DOX. METHODS: Mice were intraperitoneally administered DOX (15 mg/kg) to establish a mouse model of DOX-induced chronic cardiotoxicity (DICC). The mice were then administered different doses of FPS or enalapril intragastrically. KEY FINDINGS: In the DOX group, the activity of CK-MB and LDH and the content of NT-proBNP in serum of mice were increased. Myocardial infiltration of inflammatory cells and cytoplasmic vacuolation occurred. Levels of NLRP3, ASC, Caspase-1, IL-1ß, IL-18, IL-6, and Bax increased, whereas levels of Bcl-2, STAT3, and p-STAT3 decreased. After administering FPS (100 mg/kg and 200 mg/kg), there were reductions in CK-MB activity and NT-proBNP levels. Cytoplasmic vacuolation, interstitial infiltration of blood, and infiltration of inflammatory cells were alleviated. The changes in protein expression mentioned above were reversed. CONCLUSIONS: FPS can protect heart function and structure in DICC mice by inhibiting NLRP3 inflammasome-mediated pyroptosis and IL-6/STAT3 pathway-induced apoptosis.


Assuntos
Aconitum , Cardiotoxicidade , Diterpenos , Medicamentos de Ervas Chinesas , Camundongos , Animais , Cardiotoxicidade/prevenção & controle , Proteína 3 que Contém Domínio de Pirina da Família NLR , Aconitum/química , Interleucina-6 , Doxorrubicina/toxicidade
2.
Phytother Res ; 37(12): 5700-5723, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37748788

RESUMO

Galangin is an important flavonoid with natural activity, that is abundant in galangal and propolis. Currently, various biological activities of galangin have been disclosed, including anti-inflammation, antibacterial effect, anti-oxidative stress and aging, anti-fibrosis, and antihypertensive effect. Based on the above bioactivities, more and more attention has been paid to the role of galangin in neurodegenerative diseases, rheumatoid arthritis, osteoarthritis, osteoporosis, skin diseases, and cancer. In this paper, the natural sources, pharmacokinetics, bioactivities, and therapeutic potential of galangin against various diseases were systematically reviewed by collecting and summarizing relevant literature. In addition, the molecular mechanism and new preparation of galangin in the treatment of related diseases are also discussed, to broaden the application prospect and provide reference for its clinical application. Furthermore, it should be noted that current toxicity and clinical studies of galangin are insufficient, and more evidence is needed to support its possibility as a functional food.


Assuntos
Flavonoides , Estresse Oxidativo , Flavonoides/farmacologia , Flavonoides/uso terapêutico
3.
J Ethnopharmacol ; 314: 116573, 2023 Oct 05.
Artigo em Inglês | MEDLINE | ID: mdl-37142148

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: Gastric cancer (GC) affects people's quality of life because of its high incidence rate and mortality. The Xianglian Pill (XLP) is a traditional Chinese medicine (TCM) prescription used to treat gastrointestinal (GI) diseases. Its anti-tumor effect has been found in recent years, but it's bioactive compounds and mechanism of action in treating GC are remain unknown. AIM OF THE STUDY: This study reveals the bioactive compounds and mechanisms of XLP in the treatment of GC through network pharmacology analysis and experimental verification. MATERIALS AND METHODS: The main compounds in XLP were searched and the active compounds with anti-GC activity were selected. Compounds targets and GC- related targets were predicted, and common targets were obtained. Subsequently, a protein-protein interaction (PPI) network of common targets is constructed, while GO and KEGG enrichment analyses were performed on common targets. Finally, the anti-GC effects of active compounds in XLP were verified in GC cell lines MGC-803 and HGC-27 by wound healing assay, cell cycle assay, cell apoptosis assay and western blotting (WB) assay. RESULTS: A total of 33 active compounds of XLP were obtained. MTT assay showed that dehydrocostus lactone (DHL) and berberrubine (BRB) had lower IC50 value in GC cells HGC-27 and MGC-803, and has a less inhibitory effect on normal gastric epithelial cells. Further, 73 common targets were obtained after the total target of DHL and BRB intersected with GC. Among them, CASP3, AKT1, SRC, STAT3,and CASP9 were the most associated genes in the PPI network. GO and KEGG enrichment analyses indicated that apoptosis played a major role in the biological processes and signaling pathways involved. Moreover, the in vitro experiment revealed that DHL and BRB inhibited GC cell viability via inducing cell cycle arrest at G2/M phase, and promoting cell apoptosis by up-regulating the caspase3 expression and down-regulating the expression of Bcl2/Bax. CONCLUSIONS: DHL and BRB are the two main anti-GC active compounds in XLP, and their mechanism is mainly to inhibit cell cycle and promote cell apoptosis.


Assuntos
Medicamentos de Ervas Chinesas , Neoplasias Gástricas , Humanos , Neoplasias Gástricas/tratamento farmacológico , Farmacologia em Rede , Qualidade de Vida , Medicamentos de Ervas Chinesas/farmacologia , Medicamentos de Ervas Chinesas/uso terapêutico , Simulação de Acoplamento Molecular
4.
Front Microbiol ; 14: 1276383, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38249466

RESUMO

Cutibacterium acnes (C. acnes) is a major pathogen implicated in the evolution of acne inflammation. Inhibition of C. acnes-induced inflammation is a prospective acne therapy strategy. Berberine (BBR), a safe and effective natural ingredient, has been proven to exhibit powerful antimicrobial and anti-inflammatory properties. However, the antimicrobial effect of BBR against C. acnes and its role in C. acnes-mediated inflammatory acne have not been explored. The objective of this investigation was to assess the antibacterial activity of BBR against C. acnes and its inhibitory effect on the inflammatory response. The results of in vitro experiments showed that BBR exhibited significant inhibition zones against four C. acnes strains, with the minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC) in the range of 6.25-12.5 µg/mL and 12.5-25 µg/mL, respectively. On the bacterial growth curve, the BBR-treated C. acnes exhibited obvious growth inhibition. Transmission electron microscopy (TEM) images indicated that BBR treatment resulted in significant morphological changes in C. acnes. High-content imaging analysis further confirmed that BBR could effectively inhibit the proliferation of C. acnes. The disruption of cell wall and cell membrane structure by BBR treatment was preliminary confirmed according to the leakage of cellular contents such as potassium (K+), magnesium (Mg2+), and alkaline phosphatase (AKP). Furthermore, we found that BBR could reduce the transcript levels of genes associated with peptidoglycan synthesis (murC, murD, mraY, and murG). Meanwhile, we investigated the modulatory ability of BBR on C. acnes-induced skin inflammation in mice. The results showed that BBR effectively reduced the number of C. acnes colonized in mice's ears, thereby alleviating ear swelling and erythema and significantly decreasing ear thickness and weight. In addition, BBR significantly decreased the levels of pro-inflammatory cytokines IL-6, IL-1ß, and TNF-α in auricular tissues. These results suggest that BBR has the potential to treat inflammatory acne induced by C. acnes.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...