Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.643
Filtrar
1.
Mol Imaging ; 23: 15353508241261473, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38952401

RESUMO

Background: Labeled antibodies are excellent imaging agents in oncology to non-invasively visualize cancer-related antigens expression levels. However, tumor tracer uptake (TTU) of specific antibodies in-vivo may be inferior to non-specific IgG in some cases. Objectives: To explore factors affecting labeled antibody visualization by PD-L1 specific and non-specific imaging of nude mouse tumors. Methods: TTU was observed in RKO model on Cerenkov luminescence (CL) and near-infrared fluorescence (NIRF) imaging of radionuclide 131I or NIRF dyes labeled Atezolizumab and IgG. A mixture of NIRF dyes labeled Atezolizumab and 131I-labeled IgG was injected, and TTU was observed in the RKO and HCT8 model by NIRF/CL dual-modality in-situ imaging. TTU were observed by 131I-labeled Atezolizumab and IgG in-vitro distribution. Results: Labeled IgG concentrated more in tumors than Atezolizumab. NIRF/CL imaging in 24 to 168 h showed that TTU gradually decreased over time, which decreased more slowly on CL imaging compared to NIRF imaging. The distribution data in-vitro showed that TTU of 131I-labeled IgG was higher than that of 131I-labeled Atezolizumab at any time point. Conclusion: Non-specific IgG may not be suitable as a control for Atezolizumab in comparing tumor PD-L1 expression in nude mice via labeled antibody optical imaging under certain circumstances.


Assuntos
Antígeno B7-H1 , Camundongos Nus , Animais , Antígeno B7-H1/metabolismo , Humanos , Camundongos , Linhagem Celular Tumoral , Anticorpos Monoclonais Humanizados/química , Anticorpos Monoclonais Humanizados/farmacocinética , Imagem Óptica/métodos , Radioisótopos do Iodo/química , Neoplasias/diagnóstico por imagem , Imunoglobulina G/química , Imunoglobulina G/metabolismo , Feminino , Luminescência
2.
Front Microbiol ; 15: 1418959, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38962124

RESUMO

In recent years, porcine diarrhea-associated viruses have caused significant economic losses globally. These viruses present similar clinical symptoms, such as watery diarrhea, dehydration, and vomiting. Co-infections with porcine epidemic diarrhea virus (PEDV) and transmissible gastroenteritis virus (TGEV) are common. For the rapid and on-site preliminary diagnosis on the pig farms, this study aimed to develop a colloidal gold immunochromatography assay (GICA) strip for the detection of PEDV and TGEV simultaneously. The GICA kit showed that there was no cross-reactivity with the other five common porcine viruses. With visual observation, the lower limits were approximately 104 TCID50/mL and 104 TCID50/mL for PEDV and TGEV, respectively. The GICA strip could be stored at 4°C or 25°C for 12 months without affecting its efficacy. To validate the GICA strip, 121 clinical samples were tested. The positive rates of PEDV and TGEV were 42.9 and 9.9%, respectively, and the co-infection rate of the two viruses was 5.8% based on the duplex GICA strip. Thus, the established GICA strip is a rapid, specific, and stable tool for on-site preliminary diagnosis of PEDV- and TGEV-associated diarrhea.

3.
J Obstet Gynaecol ; 44(1): 2372665, 2024 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38963181

RESUMO

BACKGROUND: Gestational diabetes mellitus (GDM) is a prevalent pregnancy complication during pregnancy. We aimed to evaluate a risk prediction model of GDM based on traditional and genetic factors. METHODS: A total of 2744 eligible pregnant women were included. Face-to-face questionnaire surveys were conducted to gather general data. Serum test results were collected from the laboratory information system. Independent risk factors for GDM were identified using univariate and multivariate logistic regression analyses. A GDM risk prediction model was constructed and evaluated with the Hosmer-Lemeshow goodness-of-fit test, goodness-of-fit calibration plot, receiver operating characteristic curve and area under the curve. RESULTS: Among traditional factors, age ≥30 years, family history, GDM history, impaired glucose tolerance history, systolic blood pressure ≥116.22 mmHg, diastolic blood pressure ≥74.52 mmHg, fasting plasma glucose ≥5.0 mmol/L, 1-hour postprandial blood glucose ≥8.8 mmol/L, 2-h postprandial blood glucose ≥7.9 mmol/L, total cholesterol ≥4.50 mmol/L, low-density lipoprotein ≥2.09 mmol/L and insulin ≥11.5 mIU/L were independent risk factors for GDM. Among genetic factors, 11 single nucleotide polymorphisms (SNPs) (rs2779116, rs5215, rs11605924, rs7072268, rs7172432, rs10811661, rs2191349, rs10830963, rs174550, rs13266634 and rs11071657) were identified as potential predictors of the risk of postpartum DM among women with GDM history, collectively accounting for 3.6% of the genetic risk. CONCLUSIONS: Both genetic and traditional factors contribute to the risk of GDM in women, operating through diverse mechanisms. Strengthening the risk prediction of SNPs for postpartum DM among women with GDM history is crucial for maternal and child health protection.


We aimed to evaluate a risk prediction model of gestational diabetes mellitus (GDM) based on traditional and genetic factors. A total of 2744 eligible pregnant women were included. Face-to-face questionnaire surveys were conducted to collect general data. Among traditional factors, age ≥30 years old, family history, GDM history, impaired glucose tolerance history, systolic blood pressure ≥116.22 mmHg, diastolic blood pressure ≥74.52 mmHg, fasting plasma glucose ≥5.0 mmol/L, 1-hour postprandial blood glucose ≥8.8 mmol/L, 2-h postprandial blood glucose ≥7.9 mmol/L, total cholesterol ≥4.50 mmol/L, low-density lipoprotein ≥2.09 mmol/L and insulin ≥11.5 mIU/L were independent risk factors for GDM. Among genetic factors, 11 single nucleotide polymorphisms were identified as potential predictors of the risk of postpartum DM among women with GDM history, collectively accounting for 3.6% of the genetic risk. Both genetic and traditional factors increase the risk of GDM in women.


Assuntos
Diabetes Gestacional , Polimorfismo de Nucleotídeo Único , Humanos , Diabetes Gestacional/genética , Diabetes Gestacional/epidemiologia , Feminino , Gravidez , Adulto , Fatores de Risco , Medição de Risco/métodos , Glicemia/análise , Predisposição Genética para Doença , Inquéritos e Questionários , Curva ROC , Modelos Logísticos
4.
Artigo em Inglês | MEDLINE | ID: mdl-38980528

RESUMO

PURPOSE: To evaluate the ventricular electrophysiologic effects of long-term stimulation of the left dorsal branch of thoracic nerve (LDTN) derived from the left stellate ganglion (LSG) in a canine model of chronic myocardial infarction (MI). METHODS: Seventeen adult male beagles were randomly divided into three groups: the sham group (sham operated, n = 6), the MI group (n = 6), and the MI + LDTN group (MI plus LDTN stimulation, n = 5). The canine model of chronic MI was induced by the occlusion of the left anterior descending artery (LADO). The LDTN was separated and intermittently stimulated immediately after LADO for 2 months. The heart rate variability (HRV) analysis, in vivo electrophysiology, the evaluation of LSG function and neural activity, histological staining, and western blotting (WB) assay were performed to evaluate the effect of LDTN stimulation on the heart. RESULTS: The canine MI model was successfully established by LADO, and the LDTN was separated and stimulated immediately after LADO. The HRV analysis showed that LDTN stimulation reversed the increased LF value and LF/HF ratio of the MI group. LDTN stimulation prolonged the shortening ERP and APD90, decreased the dispersion of ERP and APD90, and increased the VFT. Additionally, LDTN stimulation inhibits the LSG function and neural activity. Furthermore, LDTN stimulation suppressed the activation of Wnt/ß-catenin signaling, which contributed to the LSG neuronal apoptosis by upregulation of pro-apoptotic Bax and downregulation of anti-apoptotic Bcl-2. CONCLUSION: LDTN stimulation could attenuate cardiac sympathetic remodeling and improve ventricular electrical remodeling, which may be mediated by suppressing the activated Wnt/ß-catenin signaling pathway and then promoting the LSG neuronal apoptosis.

5.
Poult Sci ; 103(9): 103976, 2024 Jun 23.
Artigo em Inglês | MEDLINE | ID: mdl-39024692

RESUMO

Pekin ducks and Shaoxing ducks are 2 Chinese local duck breeds, both domesticated from mallard, but after domestication and long-term artificial selection, the body weight of Pekin ducks is significantly higher than that of Shaoxing ducks. It is no debate that genetic factors are the main factors responsible for this difference, but whether intestinal microbiota contribute to this difference is yet unknown. Thus, we performed comparative intestinal metagenomics and metabolomics analysis between Pekin ducks and Shaoxing ducks. We found obvious differentiation of intestinal metagenome and metabolome between the 2 breeds. Four cecal microbial genera, including Fusobacterium, Methanobrevibacter, Butyricicoccus, and Anaerotignum showed higher abundance in Pekin ducks. Among them, Methanobrevibacter and Butyricicoccus may positively correlate with fat deposition and body weight. A total of 310 metabolites showed difference between the 2 breeds. Functions of these differential metabolites were mainly enriched in amino acid metabolism, including energy metabolism-related histidine metabolism. Integrated omics analysis showed that microbial changes were closely related to altered metabolites. Especially, Butyricicoccus showing higher abundance in Pekin ducks was significantly negatively correlated with D-glucosamine-6-phosphate, which has been reported to prevent body weight gains. These findings may contribute to further understand the difference in body weight between Pekin ducks and Shaoxing ducks.

6.
Exp Lung Res ; 50(1): 136-145, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39033404

RESUMO

Background: Macrophages constitute the main part of infiltrating immune cells in Malignant pleural mesothelioma (MPM) and abnormally high ratios of M2 macrophages are present in both pleural effusion and tissue samples of MPM patients. Whether MPM cells affect formation of M2 macrophages is poorly understood. In this study, we focused on identification of MPM-cells-derived soluble factors with M2-promoting effects. Methods: Media of malignant pleural mesothelioma cells were collected and soluble factors affecting macrophages were analyzed by mass spectrometry. TGF-ß receptor inhibitor SB431542 was used as the entry point to explore the downstream mechanism of action by qRT-PCR, WB and immunofluorescence. Results: The serum-free culture media collected from the human MPM cells Meso1 and Meso2 significantly enhanced expression of the M2 signature molecules including IL-10, TGF-ß and CD206 in the human macrophages THP-1, while the culture medium of the human MPM cells H2452 did not show such M2-promoting effects. Analysis of proteins by mass spectrometry and ELISA suggested that Leucine rich α2 glycoprotein 1(LRG1) was a potential candidate. LRG1 time- and dose-dependently increased expression of the M2 signature molecules, confirming its M2-promoting effects. Furthermore, LRG1's M2-promoting effects were reduced by the TGF-ß receptor inhibitor SB431542, and LRG1 increased phosphorylation of Smad2, indicating that M2-promoting effects of LRG1 were via the TGF-ß receptor/Smad2 signaling pathway. Conclusions: Our results provide a potential M2-promoting new member, LRG1, which contributes to the immune escape of MPM via the TGF-ß receptor/Smad2 signaling pathway.


Assuntos
Macrófagos , Mesotelioma Maligno , Humanos , Macrófagos/metabolismo , Macrófagos/efeitos dos fármacos , Mesotelioma Maligno/metabolismo , Mesotelioma Maligno/tratamento farmacológico , Glicoproteínas/metabolismo , Glicoproteínas/farmacologia , Linhagem Celular Tumoral , Neoplasias Pleurais/metabolismo , Neoplasias Pleurais/patologia , Fenótipo , Proteína Smad2/metabolismo , Neoplasias Pulmonares/metabolismo , Neoplasias Pulmonares/patologia , Transdução de Sinais , Fator de Crescimento Transformador beta/metabolismo , Interleucina-10/metabolismo , Benzamidas , Dioxóis
7.
ACS Nano ; 2024 Jul 21.
Artigo em Inglês | MEDLINE | ID: mdl-39033511

RESUMO

The development of tin-lead alloyed halide perovskite nanocrystals (PNCs) is highly desirable for creating ultrastable, eco-friendly optoelectronic applications. However, the current incorporation of tin into the lead matrix results in severe photoluminescence (PL) quenching. To date, the precise atomic-scale structural origins of this quenching are still unknown, representing a significant barrier to fully realizing the potential of these materials. Here, we uncover the distinctive defect-related microstructures responsible for PL quenching using atomic-resolution scanning transmission electron microscopy and theoretical calculations. Our findings reveal an increase in point defects and Ruddlesden-Popper (RP) planar faults with increasing tin content. Notably, the point defects include a spectrum of vacancies and previously overlooked antisite defects with bromide vacancies and cation antisite defects emerging as the primary contributors to deep-level defects. Furthermore, the RP planar faults exhibit not only the typical rock-salt stacking pattern found in pure Pb-based PNCs but also previously undocumented microstructures rich in bromide vacancies and deep-level cation antisite defects. Direct strain imaging uncovers severe lattice distortion and significant inhomogeneous strain distributions caused by point defect aggregation, potentially breaking the local force balance and driving RP planar fault formation via lattice slippage. Our work illuminates the nature and evolution of defects in tin-lead alloyed halide perovskite nanocrystals and their profound impact on PL quenching, providing insights that support future material strategies in the development of less toxic tin-lead alloyed perovskite nanocrystals.

8.
World J Clin Cases ; 12(20): 4217-4229, 2024 Jul 16.
Artigo em Inglês | MEDLINE | ID: mdl-39015922

RESUMO

BACKGROUND: Pulmonary hypertension is a serious complication in the treatment of maintenance hemodialysis patients, which seriously affects the quality of life of patients and threatens their life safety. Prevention, treatment and improvement of pulmonary hypertension are of great significance to improve the quality of life of patients. AIM: To investigate the intervention and control of pedal-powered bicycle in maintaining quality of life and pulmonary hypertension in hemodialysis patients. METHODS: 73 patients with maintenance hemadialysis combined with pulmonary arterial hypertension at a hemodialysis center in a certain hospital from May 2021 to May 2022 are selected. Patients are divided into two groups, 37 cases in the control group (group C) and 36 cases in the intervention group (group I). Patients are divided into two groups, group C is treated with oral administration of betaglandin sodium combined with routine nursing care. Based on group C, group I conducts power cycling exercises. RESULTS: After treatment, group I patients had higher muscle strength, 36-Item Short Form Health Survey scores, and Kidney Disease Targets Areas scores; The 6-minute walk distance test index level was higher and the Borg score was lower; The group I had lower systolic blood pressure, greater vital capacity, higher positive emotion, lower systolic pulmonary artery pressure index level, higher arterial partial oxygen pressure level, lower pulmonary vascular resistance index level, and higher blood oxygen saturation level [158.91 ± 11.89 vs 152.56 ± 12.81, 1795.01 ± 603.18 vs 1907.20 ± 574.15, 24.00 (22.00, 29.00) vs 24.00 (22.00, 28.00), P < 0.001]. CONCLUSION: Aerobic exercise combined with Western medicine treatment can effectively improve patients' pulmonary hypertension, alleviate their negative emotions, and enable them to achieve a higher level of quality of life.

9.
Heliyon ; 10(12): e32766, 2024 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-38988529

RESUMO

Fungal biofilm is a microbial community composed of fungal cells and extracellular polymeric substances (EPS). In recent years, fungal biofilms have played an increasingly important role in many fields. However, there are few studies on fungal biofilms and their related applications and development are still far from enough. Therefore, this review summarizes the composition and function of EPS in fungal biofilms, and improves and refines the formation process of fungal biofilms according to the latest viewpoints. Moreover, based on the study of Saccharomyces cerevisiae and Candida albicans, this review summarizes the gene regulation network of fungal biofilm synthesis, which is crucial for systematically understanding the molecular mechanism of fungal biofilm formation. It is of great significance to further develop effective methods at the molecular level to control harmful biofilms or enhance and regulate the formation of beneficial biofilms. Finally, the quorum sensing factors and mixed biofilms formed by fungi in the current research of fungal biofilms are summarized. These results will help to deepen the understanding of the formation process and internal regulation mechanism of fungal biofilm, provide reference for the study of EPS composition and structure, formation, regulation, group behavior and mixed biofilm formation of other fungal biofilms, and provide strategies and theoretical basis for the control, development and utilization of fungal biofilms.

10.
World J Psychiatry ; 14(6): 894-903, 2024 Jun 19.
Artigo em Inglês | MEDLINE | ID: mdl-38984344

RESUMO

BACKGROUND: Postoperative pain management and cognitive function preservation are crucial for patients undergoing thoracoscopic surgery for lung cancer (LC). This is achieved using either a thoracic paravertebral block (TPVB) or sufentanil (SUF)-based multimodal analgesia. However, the efficacy and impact of their combined use on postoperative pain and postoperative cognitive dysfunction (POCD) remain unclear. AIM: To explore the analgesic effect and the influence on POCD of TPVB combined with SUF-based multimodal analgesia in patients undergoing thoracoscopic radical resection for LC to help optimize postoperative pain management and improve patient outcomes. METHODS: This retrospective analysis included 107 patients undergoing thoracoscopic radical resection for LC at The Affiliated Cancer Hospital of Zhengzhou University and Henan Cancer Hospital between May 2021 and January 2023. Patients receiving SUF-based multimodal analgesia (n = 50) and patients receiving TPVB + SUF-based multimodal analgesia (n = 57) were assigned to the control group and TPVB group, respectively. We compared the Ramsay Sedation Scale and visual analog scale (VAS) scores at rest and with cough between the two groups at 2, 12, and 24 h after surgery. Serum levels of epinephrine (E), angio-tensin II (Ang II), norepinephrine (NE), superoxide dismutase (SOD), vascular endothelial growth factor (VEGF), transforming growth factor-ß1 (TGF-ß1), tumor necrosis factor-α (TNF-α), and S-100 calcium-binding protein ß (S-100ß) were measured before and 24 h after surgery. The Mini-Mental State Examination (MMSE) was administered 1 day before surgery and at 3 and 5 days after surgery, and the occurrence of POCD was monitored for 5 days after surgery. Adverse reactions were also recorded. RESULTS: There were no significant time point, between-group, and interaction effects in Ramsay sedation scores between the two groups (P > 0.05). Significantly, there were notable time point effects, between-group differences, and interaction effects observed in VAS scores both at rest and with cough (P < 0.05). The VAS scores at rest and with cough at 12 and 24 h after surgery were lower than those at 2 h after surgery and gradually decreased as postoperative time increased (P < 0.05). The TPVB group had lower VAS scores than the control group at 2, 12, and 24 h after surgery (P < 0.05). The MMSE scores at postoperative days 1 and 3 were markedly higher in the TPVB group than in the control group (P < 0.05). The incidence of POCD was significantly lower in the TPVB group than in the control group within 5 days after surgery (P < 0.05). Both groups had elevated serum E, Ang II, and NE and decreased serum SOD levels at 24 h after surgery compared with the preoperative levels, with better indices in the TPVB group (P < 0.05). Marked elevations in serum levels of VEGF, TGF-ß1, TNF-α, and S-100ß were observed in both groups at 24 h after surgery, with lower levels in the TPVB group than in the control group (P < 0.05). CONCLUSION: TPVB combined with SUF-based multimodal analgesia further relieves pain in patients undergoing thoracoscopic radical surgery for LC, enhances analgesic effects, reduces postoperative stress response, and inhibits postoperative increases in serum VEGF, TGF-ß1, TNF-α, and S-100ß levels. This scheme also reduced POCD and had a high safety profile.

11.
Cell Biol Int ; 2024 Jul 19.
Artigo em Inglês | MEDLINE | ID: mdl-39030886

RESUMO

Exosomes are bilayer lipid bodies and contain a variety of bioactive molecules such as proteins, lipids, and nucleic acids, and so forth. Exosomes derived from solid tumors may play critical roles in tumor development and immune evasion. However, the underlying effects of tumor-derived exosomes on immune function in modulating intercellular crosstalk within the bone marrow niche during acute myeloid leukemia (AML) development and immune evasion remain largely elusive. In this study, we aimed to explore the role of AML-exos in AML immune evasion. First, we isolated tumor-derived exosomes from AML cells (AML-exos) and revealed the presence of programmed cell death ligand-1 (PD-L1) protein in AML-exos. Next, we demonstrated that AML-exos can directly suppress the activation of natural killer (NK) cells and inhibit the cytotoxicity of NK cells, probably through activating the programmed cell death-1 (PD-1)/PD-L1 pathway. Furthermore, the inhibitory effect of AML-exos on NK cells could be alleviated by either PD-L1 inhibitor or antagonist. In summary, we demonstrated that AML-exos possess a PD-L1-dependent tumor-promoting effect which may contribute to immune tolerance in antitumor therapy, but blocking the PD-1/PD-L1 pathway may alleviate the tumor immunosuppression induced by AML-exos. Our findings in this study may offer a new immunotherapy strategy to cure AML.

13.
Artigo em Inglês | MEDLINE | ID: mdl-38940794

RESUMO

Background: Liver failure is a rare, life-threatening disease that has a high mortality rate and affects many organ systems. Bloodstream bacterial infection has played a key role in liver failure patients with plasma exchange-centered artificial liver support systems, but the predicted risk factors of infection have not been fully understood. Objective: We aimed to predict bloodstream bacterial infection in high-risk groups of liver failure patients during a plasma exchange-centered artificial liver support system. Design: This was a prospective cohort study. Setting: This study was performed in Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School. Participants: 118 liver failure patients with plasma exchange-centered artificial liver support system therapy from Nanjing Drum Tower Hospital from November 2019 to November 2020 were selected. Interventions: We used a stepwise binary logistic regression model to select the optimal risk factors of infection with minimum Akaike information criterion, and the Nomogram prognostic model for bloodstream infection was constructed for visualization. Primary Outcome Measures: Risk factors of bloodstream infection (2) predictive accuracy of the constructed nomogram model. Results: Among the 118 liver failure patients, 22 (18.64%) were diagnosed with bloodstream bacterial infection. The univariable and multivariate logistic regression analyses suggested that culture level, glucocorticoids use, number of punctures, blood platelet counts, white blood cell counts, and indwelling catheter time were the sex predictors of bloodstream infection for liver failure patients during plasma exchange-centered artificial liver support system (P = .042, P = .013, P = .025, P = .003, P = .024 and P = .026). The nomogram predictive model was established with high prediction accuracy, of which the area under the curve was 0.935 (95% confidence interval: 0.884-0.986), the sensitivity was 0.955, and the specificity was 0.854. Conclusion: The constructed nomogram prognostic model can recognize the risk factors and accurately predict bloodstream infection for liver failure patients during plasma exchange-centered artificial liver support system.

14.
Eye (Lond) ; 2024 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-38907015

RESUMO

PURPOSE: To investigate the postoperative clinical outcomes and axial length (AL) growth of infants with congenital cataracts and microphthalmos following first-stage cataract surgery. DESIGN: Retrospective case-control study. METHODS: Setting: Single centre. Infants with congenital cataract that met the inclusion criteria were classified into two groups: the microphthalmos and comparison groups. All infants underwent a thorough ophthalmologic examination before surgery, and one week, 1 month, 3 months, and every 3 months after surgery. RESULTS: This study enrolled 21 infants (42 eyes) in the microphthalmos group and 29 infants (58 eyes) in the comparison group. More glaucoma-related adverse events were observed in the microphthalmos group (7 eyes, 16.7%) than in the comparison group (0 eyes, 0%) (p < 0.001). At each subsequent follow-up, the comparison group had a greater AL than the microphthalmos group (all p < 0.001), and AL growth was significantly higher in the comparison group than in the microphthalmos group (all p = 0.035). Visual acuity improvement in the microphthalmos group was similar to that of the comparison group. CONCLUSION: Early surgical intervention improves visual function in infants with congenital cataracts and microphthalmos although with a higher incidence of glaucoma-related adverse events. After cataract removal, the AL growth of microphthalmic eyes is slower than that of normally developed eyes.

15.
J Am Chem Soc ; 2024 Jun 06.
Artigo em Inglês | MEDLINE | ID: mdl-38843465

RESUMO

Bioassay systems that can selectively detect biomarkers at both high and low levels are of great importance for clinical diagnosis. In this work, we report an enzyme electrode with an oxygen reduction reaction (ORR)-tolerant H2O2 reduction property and an air-liquid-solid triphase interface microenvironment by regulating the surface defects and wettability of nanoporous tin oxide (SnOx). The enzyme electrode allows the oxygen that is required for the oxidase catalytic reaction to be transported from the air phase to the reaction zone, which greatly enhances the enzymatic kinetics and increases the linear detection upper limit. Meanwhile, the ORR-tolerant H2O2 reduction property of SnOx catalysts achieved via oxygen vacancy engineering greatly reduces the interferent signals caused by oxygen and various easily oxidizable endogenous/exogenous species, which enables the selective detection of biomarkers at trace levels. The synergistic effect between these two novel qualities features a bioassay system with a wide dynamic linear range and high selectivity for the accurate detection of a wide range of biomarkers, such as glucose, lactic acid, uric acid, and galactose, offering the potential for reliable clinical diagnosis applications.

16.
G3 (Bethesda) ; 2024 Jun 11.
Artigo em Inglês | MEDLINE | ID: mdl-38861393

RESUMO

The nine-spined stickleback (Pungitius pungitius) has been increasingly used as a model system in studies of local adaptation and sex chromosome evolution but its current reference genome assembly is far from perfect, lacking distinct sex chromosomes. We generated an improved assembly of the nine-spined stickleback reference genome (98.3% BUSCO completeness) with the aid of linked-read mapping. While the new assembly (v8) was of similar size as the earlier version (v7), we were able to assign 4.4 times more contigs to the linkage groups and improve the contiguity of the genome. Moreover, the new assembly contains a ∼22.8 Mb Y-linked scaffold (LG22) consisting mainly of previously assigned X-contigs, putative Y-contigs, putative centromere contigs and highly repetitive elements. The male individual showed an even mapping depth on LG12 (pseudo X chromosome) and LG22 (Y-linked scaffold) in the segregating sites, suggesting near-pure X and Y representation in the v8 assembly. A total of 26,803 genes were annotated, and about 33% of the assembly was found to consist of repetitive elements. The high proportion of repetitive elements in LG22 (53.10%) suggests it can be difficult to assemble the complete sequence of the species' Y chromosome. Nevertheless, the new assembly is a significant improvement over the previous version and should provide a valuable resource for genomic studies of stickleback fishes.

17.
J Colloid Interface Sci ; 672: 589-599, 2024 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-38852359

RESUMO

Failure of articular cartilage lubrication and inflammation are the main causes of osteoarthritis (OA), and integrated treatment realizing joint lubrication and anti-inflammation is becoming the most effective treat model. Inspired by low friction of human synovial fluid and adhesive chemical effect of mussels, our work reports a biomimetic lubricating system that realizes long-time lubrication, photothermal responsiveness and anti-inflammation property. To build the system, a dopamine-mediated strategy is developed to controllably graft hyaluronic acid on the surface of metal organic framework. The design constructs a biomimetic core-shell structure that has good dispersity and stability in water with a high drug loading ratio of 99%. Temperature of the solution rapidly increases to 55 °C under near-infrared light, and the hard-soft lubricating system well adheres to wear surfaces, and greatly reduces frictional coefficient by 75% for more than 7200 times without failure. Cell experiments show that the nanosystem enters cells by endocytosis, and releases medication in a sustained manner. The anti-inflammatory outcomes validate that the nanosystem prevents the progression of OA by down-regulating catabolic proteases and pain-related genes and up-regulating genes that are anabolic in cartilage. The study provides a bioinspired strategy to employ metal organic framework with controlled surface and structure for friction reduction and anti-inflammation, and develops a new concept of OA synergistic therapy model for practical applications.


Assuntos
Materiais Biomiméticos , Ácido Hialurônico , Osteoartrite , Osteoartrite/tratamento farmacológico , Osteoartrite/patologia , Osteoartrite/metabolismo , Humanos , Materiais Biomiméticos/química , Materiais Biomiméticos/farmacologia , Ácido Hialurônico/química , Ácido Hialurônico/farmacologia , Animais , Estruturas Metalorgânicas/química , Estruturas Metalorgânicas/farmacologia , Propriedades de Superfície , Lubrificação , Anti-Inflamatórios/química , Anti-Inflamatórios/farmacologia , Tamanho da Partícula , Dopamina/química , Dopamina/farmacologia , Liberação Controlada de Fármacos
18.
J Colloid Interface Sci ; 672: 715-723, 2024 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-38870762

RESUMO

Heazlewoodite nickel sulfide (Ni3S2) is advocated as a promising nonnoble catalyst for electrochemical water splitting because of its unique structure configuration and high conductivity. However, the low active sites and strong sulfur-hydrogen bonds (S-Hads) formed on Ni3S2 surface greatly inhibit the desorption of Hads and reduce the hydrogen and oxygen evolution reaction (HER and OER) activity. Doping is a valid strategy to stimulate the intrinsic catalytic activity of pristine Ni3S2 via modifying the active site. Herein, the Ni foam supported Fe and Mo co-doped Ni3S2 electrocatalysts (Fe-MoS2/Ni3S2@NF) have been constructed using Keplerate polyoxomolybdate {Mo72F30} as precursor through a facile hydrothermal process. Experimental results certificate that Fe and Mo co-doping can effectively tune the local electronic structure, facilitate the interfacial electron transfer, and improve the intrinsic activity. Consequently, the Fe-MoS2/Ni3S2@NF display more excellent HER and OER activity than MoS2/Ni3S2@NF and bare Ni3S2@NF by delivering the 10 and 50 mA cm-2 current densities at ultra-low overpotentials of 74/175 and 80/160 mV for HER and OER. Moreover, when coupled in an alkaline electrolyzer, Fe-MoS2/Ni3S2@NF approached the current of 10 mA cm-2 under a cell voltage of 1.60 V and exhibit excellent stability. The strategy to realize tunable catalytic behaviors via foreign metal doping provides a new avenue to optimize the water splitting catalysts.

19.
Spectrochim Acta A Mol Biomol Spectrosc ; 320: 124667, 2024 Nov 05.
Artigo em Inglês | MEDLINE | ID: mdl-38906059

RESUMO

As a kind of commonly-used synthetic materials for many pesticides, thiol compounds, once being leaked, can cause serious harm to the environment and humans. Therefore, the efficient detection of thiol compounds is essential. In this study developed a turn-on fluorescent probe (Cu@Zn-CP) for the highly sensitive fluorescence detection of thiol compounds. The probe was constructed based on a zinc coordination polymer (Zn-CP), whose fluorescence was quenched through the effective doping of Cu2+ ions. After the introduction of methyl thioglycolate (MTC), a rapid fluorescence turn-on response was generated within 90 s with a low detection limit of 23 ppb. Even after being reused for five cycles, the sensor maintains excellent detection performance and demonstrates good recyclability. It can also detect MTC in river water, with a spike recovery rate between 98-103 %. Furthermore, the designed Cu@Zn-CP exhibits good universality for detecting multifarious thiol compounds, including L-cysteine, glutathione, monothioglycerol, and 2-hydroxy-1-ethanethiol. This result provides a potential recyclable fluorescent sensor for thiol compounds.

20.
Nat Commun ; 15(1): 4943, 2024 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-38858372

RESUMO

The development of Type I photosensitizers (PSs) is of great importance due to the inherent hypoxic intolerance of photodynamic therapy (PDT) in the hypoxic microenvironment. Compared to Type II PSs, Type I PSs are less reported due to the absence of a general molecular design strategy. Herein, we report that the combination of typical Type II PS and natural substrate carvacrol (CA) can significantly facilitate the Type I pathway to efficiently generate superoxide radical (O2-•). Detailed mechanism study suggests that CA is activated into thymoquinone (TQ) by local singlet oxygen generated from the PS upon light irradiation. With TQ as an efficient electron transfer mediator, it promotes the conversion of O2 to O2-• by PS via electron transfer-based Type I pathway. Notably, three classical Type II PSs are employed to demonstrate the universality of the proposed approach. The Type I PDT against S. aureus has been demonstrated under hypoxic conditions in vitro. Furthermore, this coupled photodynamic agent exhibits significant bactericidal activity with an antibacterial rate of 99.6% for the bacterial-infection female mice in the in vivo experiments. Here, we show a simple, effective, and universal method to endow traditional Type II PSs with hypoxic tolerance.


Assuntos
Benzoquinonas , Fotoquimioterapia , Fármacos Fotossensibilizantes , Staphylococcus aureus , Benzoquinonas/química , Benzoquinonas/farmacologia , Benzoquinonas/metabolismo , Fármacos Fotossensibilizantes/farmacologia , Animais , Camundongos , Feminino , Fotoquimioterapia/métodos , Transporte de Elétrons/efeitos dos fármacos , Staphylococcus aureus/efeitos dos fármacos , Cimenos/farmacologia , Cimenos/química , Antibacterianos/farmacologia , Oxigênio Singlete/metabolismo , Superóxidos/metabolismo , Infecções Estafilocócicas/tratamento farmacológico , Humanos , Luz , Camundongos Endogâmicos BALB C
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...