Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 31
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Colloid Interface Sci ; 664: 33-44, 2024 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-38458053

RESUMO

Photocatalytic nitrogen fixation presents an eco-friendly approach to converting atmospheric nitrogen into ammonia (NH3), but the process faces challenges due to rapid interface charge recombination. Here, we report an innovative charge transfer and oriented accumulation strategy using an In-O-Mo bond-modulated S-scheme heterostructure composed of In2O3/Bi2MoO6 (In/BMO) synthesized using a simple electrostatic assembly. The unique interfacial arrangement with optimal photocatalyst configuration (3 % In/BMO) enabled enhanced photogenerated electron separation and transfer, leading to a remarkable nitrogen fixation rate of approximately 150.9 µmol·gcat-1·h-1 under visible light irradiation. The performance of the photocatalyst was 9-fold and 27-fold higher than that of its pristine components, Bi2MoO6 and In2O3, respectively. The experimental and theoretical evaluation deemed interfacial In-O-Mo bonds crucial for rapid transfer and charge-oriented accumulation. Whereas the generated internal electric field drove the spatial separation and transfer of photo-generated electrons and holes, significantly enhancing the photocatalytic N2-to-NH3 conversion efficiency. The proposed work lays the foundation for designing S-scheme heterostructures with highly efficient interfacial bonds, offering a promising avenue for substantial improvements in photocatalytic nitrogen fixation.

2.
Br J Anaesth ; 132(2): 334-342, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38044237

RESUMO

BACKGROUND: Delayed emergence from general anaesthesia poses a significant perioperative safety hazard. Subanaesthetic doses of ketamine not only deepen anaesthesia but also accelerate recovery from isoflurane anaesthesia; however, the mechanisms underlying this phenomenon remain elusive. Esketamine exhibits a more potent receptor affinity and fewer adverse effects than ketamine and exhibits shorter recovery times after brief periods of anaesthesia. As the paraventricular thalamus (PVT) plays a pivotal role in regulating wakefulness, we studied its role in the emergence process during combined esketamine and isoflurane anaesthesia. METHODS: The righting reflex and cortical electroencephalography were used as measures of consciousness in mice during isoflurane anaesthesia with coadministration of esketamine. The expression of c-Fos was used to determine neuronal activity changes in PVT neurones after esketamine administration. The effect of esketamine combined with isoflurane anaesthesia on PVT glutamatergic (PVTGlu) neuronal activity was monitored by fibre photometry, and chemogenetic technology was used to manipulate PVTGlu neuronal activity. RESULTS: A low dose of esketamine (5 mg kg-1) accelerated emergence from isoflurane general anaesthesia (474 [30] s vs 544 [39] s, P=0.001). Esketamine (5 mg kg-1) increased PVT c-Fos expression (508 [198] vs 258 [87], P=0.009) and enhanced the population activity of PVTGlu neurones (0.03 [1.7]% vs 6.9 [3.4]%, P=0.002) during isoflurane anaesthesia (1.9 [5.7]% vs -5.1 [5.3]%, P=0.016) and emergence (6.1 [6.2]% vs -1.1 [5.0]%, P=0.022). Chemogenetic suppression of PVTGlu neurones abolished the arousal-promoting effects of esketamine (459 [33] s vs 596 [33] s, P<0.001). CONCLUSIONS: Our results suggest that esketamine promotes recovery from isoflurane anaesthesia by activating PVTGlu neurones. This mechanism could explain the rapid arousability exhibited upon treatment with a low dose of esketamine.


Assuntos
Anestésicos Inalatórios , Isoflurano , Ketamina , Tálamo , Animais , Camundongos , Anestesia Geral , Anestésicos Inalatórios/farmacologia , Isoflurano/farmacologia , Ketamina/farmacologia , Tálamo/efeitos dos fármacos
3.
J Colloid Interface Sci ; 659: 139-148, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38159490

RESUMO

At present, it is a research hotspot to realize green synthetic ammonia by using solar energy. Exploring cheap and efficient co-catalysts for enhancing the performance of photocatalysts is a challenge in the field of energy conversion. In order to boost the charge separation/transfer of the photocatalyst and widen the visible light absorption, Bi24O31Br10@Bi/Ti3C2Tx with double Ohm junction is successfully fabricated by in situ growth of metal Bi and loading Ti3C2Tx MXene on the surface of Bi24O31Br10. The dual active sites of Bi and Ti3C2Tx MXene not only broaden the light adsorption of Bi24O31Br10 but also serve as excellent 'electronic receptor' for synergically enhancing the separation/transfer efficiency of photogenerated electrons/holes. Meanwhile, temperature programmed desorption (TPD) result revealed that MXene and Bi can promote N2 adsorption/activation and NH3 desorption over Bi24O31Br10@Bi/Ti3C2Tx. As a result, under mild conditions and without the presence of hole scavenger, the ammonia synthesis efficiency of Bi24O31Br10@Bi/Ti3C2Tx-20 % reached 53.86 µmol g-1cat for three hours which is 3.2 and 53.8 times of Bi24O31Br10 and Ti3C2Tx, respectively. This study offers a novel scheme for the construction of photocatalytic systems and demonstrates Ti3C2Tx MXene and metal Bi as a promising and cheap co-catalyst.

4.
Nanomaterials (Basel) ; 13(13)2023 Jul 06.
Artigo em Inglês | MEDLINE | ID: mdl-37446529

RESUMO

Nuclear energy with low carbon emission and high-energy density is considered as one of the most promising future energy sources for human beings. However, the use of nuclear energy will inevitably lead to the discharge of nuclear waste and the consumption of uranium resources. Therefore, the development of simple, efficient, and economical uranium extraction methods is of great significance for the sustainable development of nuclear energy and the restoration of the ecological environment. Photocatalytic U(VI) extraction technology as a simple, highly efficient, and low-cost strategy, received increasing attention from researchers. In this review, the development background of photocatalytic U(VI) extraction and several photocatalytic U(VI) reduction mechanisms are briefly described and the identification methods of uranium species after photocatalytic reduction are addressed. Subsequently, the modification strategies of several catalysts used for U(VI) extraction are summarized and the advantages and disadvantages of photocatalytic U(VI) extraction are compared. Additionally, the research progress of photocatalytic technology for U(VI) extraction in actual uranium-containing wastewater and seawater are evaluated. Finally, the current challenges and the developments of photocatalytic U(VI) extraction technology in the future are prospected.

5.
Small ; 19(39): e2302330, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37259262

RESUMO

Selective oxidation of biomass-based molecules to high-value chemicals in conjunction with hydrogen evolution reaction (HER) is an innovative photocatalysis strategy. The key challenge is to design bifunctional photocatalysts with suitable band structures, which can achieve highly efficient generation of high-value chemicals and hydrogen. Herein, NiS/Cd0.6 Zn0.4 S Schottky junction bifunctional catalysts are constructed for sunlight-driven catalytic vanillyl alcohol (VAL) selective oxidation towards vanillin (VN) coupling HER. At optimal conditions, the 8% NiS/Cd0.6 Zn0.4 S photocatalyst achieves high activity of VN production (3.75 mmol g-1 h-1 ) and HER (3.84 mmol g-1 h-1 ). It also exhibits remarkable VAL conversion (66.9%), VN yield (52.1%), and selectivity (77.8%). The photocatalytic oxidation of VAL proceeds a carbon-centered radical mechanism via the cleavage of αC-H bond. Experimental results and theoretical calculations show that NiS with metallic properties enhances the electron transfer capability. Importantly, a Ni-S-Cd "electron bridge" formed at the interface of NiS/Cd0.6 Zn0.4 S further improves the separation/transfer of electrone/h+ pairs and also furnishes HER active sites due to its smaller the |ΔGH* | value, thereby resulting in a remarkably HER activity. This work sheds new light on the selective catalytic oxidation VAL to VN coupling HER, with a new pathway towards achieving its efficient HER efficiency.

6.
J Colloid Interface Sci ; 646: 228-237, 2023 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-37196496

RESUMO

The compact carbon materials with huge specific surface area (SSA) and proper pore structure are highly desirable towards high-performance supercapacitors at the cell level. However, to well balance of porosity and density is still an on-going task. Herein, a universal and facile strategy of pre-oxidation-carbonization-activation is employed to prepare the dense microporous carbons from coal tar pitch. The optimized sample POCA800 not only possesses a well-developed porous structure with the SSA of 2142 m2 g-1 and total pore volume (Vt) of 1.540 cm3 g-1, but also exhibits a high packing density of 0.58 g cm-3 and proper graphitization. Owing to these advantages, POCA800 electrode at areal mass loading of 10 mg cm-2 shows a high specific capacitance of 300.8 F g-1 (174.5 F cm-3) at 0.5 A g-1 and good rate performance. The POCA800 based symmetrical supercapacitor with a total mass loading of 20 mg cm-2 displays a large energy density of 8.07 Wh kg-1 at 125 W kg-1 and remarkable cycling durability. It is revealed that the prepared density microporous carbons are promising for practical applications.

7.
Chemistry ; 29(38): e202300748, 2023 Jul 06.
Artigo em Inglês | MEDLINE | ID: mdl-37081707

RESUMO

Inspired by nature, it has been considered an effective approach to design artificial photosynthetic system by fabricating Z-scheme photocatalysts to eliminate environmental issues and alleviate the global energy crisis. However, the development of low cost, environment-friendly, and high-efficient photocatalysts by utilizing solar energy still confronts huge challenge. Herein, we constructed a Bi2 O3 /(BiO)2 CO3 /Bi2 MoO6 ternary heterojunction via a facile solvothermal method and calcination approach and used it as a photocatalyst for the degradation of phenol. The optimized Bi2 O3 /(BiO)2 CO3 /Bi2 MoO6 heterojunction delivers a considerable activity for phenol photodegradation with an impressive removal efficiency of 98.8 % and about total organic carbon (TOC) of 68 % within 180 min under visible-light irradiation. The excellent photocatalytic activity was ascribed to the formation of a Z-scheme heterojunction, more importantly, the presence of (BiO)2 CO3 as an electron bridge greatly shortens the migration distance of photogenerated electron from ECB of Bi2 O3 to EVB of Bi2 MoO6 , thus prolonging the lifetime of photogenerated electrons, which is verified by trapping experiments, electron spin-resonance spectroscopy (ESR) results, and density functional theory (DFT) calculations. This work provides a potential strategy to fabricate highly efficient Bi-based Z-scheme photocatalysts with wide application prospects in solar-to-fuel conversion and environmental protection.


Assuntos
Bismuto , Fenol , Elétrons , Fenóis , Espectroscopia de Ressonância de Spin Eletrônica
8.
J Colloid Interface Sci ; 630(Pt B): 341-351, 2023 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-36327736

RESUMO

The practicable technology for producing hydrogen energy was mainly photocatalytic water splitting. Recently, heterostructural photocatalysts have attracted much attention due to its unique band structures and interfacial interactions. Herein, plate-on-plate MoS2/Cd0.6Zn0.4S heterostructure was rationally designed and fabricated by a simple strategy. It was revealed that Zn-doping content in the Cd0.6Zn0.4S solid solution as well as the mass ratio of MoS2 in the MoS2/Cd0.6Zn0.4S heterostructure can significantly affect the photocatalytic hydrogen evolution reaction (HER) activity. Especially, when Zn doping content is 40 % and the mass ratio of MoS2 is approximately 0.8 % (0.8 % MoS2/Cd0.6Zn0.4S), it exhibits the highest hydrogen production (47.68 µmol·g-1 at 2.5 h) without sacrificial agents. When Na2S/Na2SO3 is employed as sacrificial agent, its HER activity reaches 13466.50 µmol·g-1·h-1, 1.3 folds higher than Cd0.6Zn0.4S. The boosted HER activity of the Z-scheme MoS2/Cd0.6Zn0.4S heterostructure was ascribed to the greatly improved separation efficiency of photogenerated carriers. Most importantly, studies have revealed that the existence of sacrificial agents (Na2S/Na2SO3) can not only accelerate the kinetics of oxidation half reaction, but also synchronously strengthen HER half-reactions. The present work reveals a facile strategy for construction of Z-scheme heterostructures for efficient hydrogen evolution via hole sacrificial agent synchronously strengthen half-reactions.


Assuntos
Compostos de Cádmio , Molibdênio , Molibdênio/química , Cádmio , Compostos de Cádmio/química , Hidrogênio/química , Zinco
9.
Front Pharmacol ; 13: 969107, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36263137

RESUMO

Lack of effective drugs for acute kidney injury (AKI) grades 1-2 is a crucial challenge in clinic. Our previously single-center clinical studies indicated Chuan Huang Fang (CHF) might have nephroprotection in AKI on chronic kidney disease (CKD) (A on C) patients by preventing oxidant damage and inhibiting inflammation. Reduced glutathione (RG) has recently been shown to increase the clinical effectiveness of high-flux hemodialysis among patients with severe AKI. In this multicenter randomized controlled clinical study, we designed a new protocol to assess the efficacy and safety of CHF combining RG in patients with A on C. We also explored therapeutic mechanisms from renal fibrosis biomarkers. 98 participants were randomly and equally divided into the RG and RG + CHF subgroups. The RG and RG + CHF groups received general treatments with RG and a combination of RG and CHF, respectively. The therapy lasted for 2 weeks. In this study, the primary assessment result was a difference in the slope of serum creatinine (Scr) over the course of 2 weeks. The secondary evaluation outcomes were alterations in blood urea nitrogen (BUN), uric acid (UA), estimated glomerular filtration rate (eGFR), urinary AKI biomarkers, renal fibrosis biomarkers (transforming growth factor-ß 1 (TGF-ß 1), connective tissue growth factor (CTGF)), and traditional Chinese medicine (TCM) symptoms. Furthermore, vital signs and adverse events (AEs) were observed. Both groups had a slower renal function decline after treatment than before treatment. Compared with RG group, more reductions of Scr, BUN, UA, and better improvement of eGFR were observed in RG + CHF group (p < 0.05). Additionally, the levels of urinary AKI biomarkers, renal fibrosis biomarkers, and TCM syndromes were decreased in RG + CHF group versus RG group (p < 0.05). No significant between-group differences were observed of AEs. We thus concluded this novel therapy of CHF combining RG might be a useful method for treating A on C patients.

10.
J Colloid Interface Sci ; 628(Pt B): 446-455, 2022 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-35998467

RESUMO

Electrocatalytic urea oxidation reaction (UOR) is a prospective method to substitute the slow oxygen evolution reaction (OER) and solve the problem of urea-rich water pollution due to the low thermodynamic voltage, but its complex six-electron oxidation process greatly impedes the overall efficiency of electrolysis. Here, density functional theory (DFT) calculations imply that the metallic Ni3S2 and semiconductive MoS2 could form Mott-Schottky catalyst because of the suitable band structure. Therefore, we synthesized MoS2/Ni3S2 electrocatalyst by a simple hydrothermal method, and studied its UOR and hydrogen evolution reaction (HER) performance. The formed MoS2/Ni3S2 Schottky heterojunction is only required 109  and 166 mV to obtain ±10 mA cm-2 for UOR and HER, respectively, showing great bifunctional catalytic activity. Moreover, the full urea electrolysis driven by MoS2/Ni3S2 delivers 10 and 100 mA cm-2 at a relatively low potential of 1.44 and 1.59 V. Comprehensive experiments and DFT calculations demonstrate that the MoS2/Ni3S2 Schottky heterojunction causes self-driven charge transfer at the interface and forms built-in electric field, which is not only benefit to reduce H* adsorption energy, but also helps to adjust the absorption and directional distribution of urea molecules, thereby promoting the activity of decomposition of water and urea. This research furnishes a tactic to devise more efficient catalysts for H2 generation and the treatment of urea-rich water pollution.

11.
Front Oncol ; 12: 895106, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35860596

RESUMO

Hepatocellular carcinomas remain as a global health threat given its high mortality rate. We have previously identified the selectivity of cold atmospheric plasma (CAP) against multiple types of malignant tumors and proposed it as a promising onco-therapeutic strategy. Here, we investigated its roles in controlling hepatocellular carcinoma malignancy and one possible driving molecular mechanism. By focusing on post-translational modifications including acetylation, phosphorylation, and ubiquitination, we identified the crosstalk between EGFR acetylation and EGFR(Tyr1068) phosphorylation and their collective roles in determining LC3B ubiquitination and proposed the EGFR/p-JNK/BIRC6/LC3B axis in CAP-triggered autophagy. Our study not only demonstrated the selectivity of CAP against hepatocellular carcinoma malignancy and confirmed its roles as an onco-therapeutic tool but also opened the horizon of translating CAP into clinics toward a broader scope that included human longevity and anti-aging.

12.
ChemSusChem ; 15(11): e202200297, 2022 Jun 08.
Artigo em Inglês | MEDLINE | ID: mdl-35352877

RESUMO

Under mild conditions, nitrogen undergoes the associative pathways to be reduced with solar energy as the driving force for fixation, avoiding the high energy consumption when undergoing dissociation. Nevertheless, this process is hindered by the high hydrogenation energy barrier. Herein, Ti was introduced as hard acid into the δ-Bi2 O3 (Ti-Bi2 O3 ) lattice to tune its local electronic structure and optimize its photo-electrochemistry performance (reduced bandgap, increased conduction band maximum, and extended carrier lifetime). Heterokaryotic Ti-Bi dual-active sites in Ti-Bi2 O3 created a novel adsorption geometry of O-N2 interaction proved by density functional theory calculation and N2 temperature-programmed desorption. The synergistic effect of dual-active sites reduced the energy barrier of hydrogenation from 2.65 (Bi2 O3 ) to 2.13 eV (Ti-Bi2 O3 ), thanks to the highly overlapping orbitals with N2 . Results showed that 10 % Ti-doped Bi2 O3 exhibited an excellent ammonia production rate of 508.6 µmol gcat -1 h-1 in water and without sacrificial agent, which is 4.4 times higher than that of Bi2 O3 . In this work, bridging oxygen activation and synergistic hydrogenation for nitrogen with Ti-Bi dual active sites may unveil a corner of the hidden nitrogen reduction reaction mechanism and serves as a distinctive strategy for the design of nitrogen fixation photocatalysts.

13.
J Colloid Interface Sci ; 614: 298-309, 2022 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-35101677

RESUMO

Carbon materials with rational pore structure have attracted tremendous attention in high-performance supercapacitor applications. However, designing and constructing such carbon materials with excellent performances via a simple and low-cost route is still a challenge. Herein, the nitrogen self-doped oxygen-rich hierarchical porous carbons (OTSx-PC) derived from coal tar pitch are constructed via a facile strategy of air pre-oxidation-activation. The air pre-oxidation treatment can effectively regulate the small-sized mesopore structure (2-4 nm) of samples. The optimal OTS350-PC sample exhibits a high specific capacitance of 298 F g-1 at 0.5 A g-1, and delivers a high energy density of 14.9 Wh kg-1 at a power density of 0.15 kW kg-1 with remarkable cycling stability in KOH aqueous electrolyte. This excellent electrochemical performance is attributed to its ultrahigh specific surface area (SSA, 2941 m2 g-1), huge total pore volume (Vt, 1.9 cm3 g-1), rational pore structure and reasonable heteroatom configuration, which ensure sufficient charge storage, rapid electrolyte ions diffusion, as well as the contributed pseudocapacitance. This research not only offers a facile route for high-value utilization of coal tar pitch but also provides the cost-effective and excellent porous carbons for supercapacitor with high performance.

14.
J Colloid Interface Sci ; 608(Pt 1): 482-492, 2022 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-34626990

RESUMO

Energy band structures greatly determine the charge separation and transfer properties in heterojunction photocatalysts and consequently their photocatalytic activities. Herein, a well-designed Z-scheme ZnIn2S4-S/CNTs/RP (ZIS-S/CNTs/RP) nanocomposite was fabricated according to an energy band alignment steering strategy to realize superior photocatalytic H2 evolution performance. The ZIS-S/CNTs/RP nanocomposite shows an efficient photocatalytic H2 evolution rate of 1639.9 µmol g-1h-1, which is noticeably higher than that of pristine red phosphorus (RP) and CNTs/RP and ZIS-S/RP composites, as well as those of the compared heterojunctions using bulk RP or ZnIn2S4. Owing to the modification of nanosized RP and the introduction of sulfur vacancies in ZnIn2S4, a tailored energy band alignment of the heterojunction with a higher reduction potential and larger Fermi level potential difference was achieved, which resulted in significantly increased photogenerated electron-hole separation efficiency and a more efficient Z-scheme charge transfer mechanism, thus promoting the photocatalytic activity of ZIS-S/CNTs/RP. This work aims to provide a novel effective strategy for the construction of high-performance heterojunction photocatalysts by energy band engineering.

15.
J Colloid Interface Sci ; 606(Pt 2): 1004-1013, 2022 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-34487923

RESUMO

Designing and fabricating efficient electrocatalysts is a practical step toward the commercial application of the efficient hydrogen evolution reaction (HER) over all pH ranges. Herein, novel Ti@Ni(OH)2-NiMoS heterostructure with interface between crystalline Ni(OH)2 and amorphous NiMoS was rationally designed and fabricated on Ti mesh (denoted as Ti@Ni(OH)2-NiMoS). Acid etching and calcination experiments helped in accurate elucidation of the synergistic mechanism as well as the vital role on crystalline Ni(OH)2 and amorphous NiMoS. In acidic solutions, the HER performance of Ti@Ni(OH)2-NiMoS was mainly attributed to the amorphous NiMoS. In neutral, alkaline, and natural seawater solutions, the HER performance was mainly determined by the synergistic interface behaviors between the Ni(OH)2 and NiMoS. The crystalline Ni(OH)2 accelerated water dissociation kinetics, while the amorphous NiMoS provided abundant active sites and allowed for fast electron transfer rates. To deliver current densities of 10 mA·cm-2 in acidic, neutral, alkaline, and natural seawater solutions, the Ti@Ni(OH)2-NiMoS required overpotentials of 138, 198, 180 and 371 mV, respectively. This paper provides general guidelines for designing efficient electrocatalyst with crystalline/amorphous interfaces for efficient hydrogen evolution over all-pH ranges.

16.
Apoptosis ; 26(7-8): 385-414, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-34236569

RESUMO

Cancer cells are disordered by nature and thus featured by higher internal redox level than healthy cells. Redox imbalance could trigger programmed cell death if exceeded a certain threshold, rendering therapeutic strategies relying on redox control a possible cancer management solution. Yet, various programmed cell death events have been consecutively discovered, complicating our understandings on their associations with redox imbalance and clinical implications especially therapeutic design. Thus, it is imperative to understand differences and similarities among programmed cell death events regarding their associations with redox imbalance for improved control over these events in malignant cells as well as appropriate design on therapeutic approaches relying on redox control. This review addresses these issues and concludes by bringing affront cold atmospheric plasma as an emerging redox controller with translational potential in clinics.


Assuntos
Apoptose , Neoplasias , Humanos , Neoplasias/tratamento farmacológico , Neoplasias/genética , Oxirredução , Processamento de Proteína Pós-Traducional
17.
J Colloid Interface Sci ; 599: 741-751, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-33984766

RESUMO

In this work, we designed a novel Bi2MoO6/Bi2MoO6-x homojunction photocatalyst and successfully fabricated by a facile solvothermal-calcination approach. Experimental characterizations indicated that the formation of Bi2MoO6/Bi2MoO6-x homojunction was caused by controlling oxygen vacancies formation. Such Bi2MoO6/Bi2MoO6-x homojunction exhibits about 240 times higher photocatalytic activity towards phenol degradation as compared with pure Bi2MoO6 under visible light irradiation. Similarly, for a co-existed phenol and Cr(VI) model system, Bi2MoO6/Bi2MoO6-x-catalyzed the photodegradation of phenol and the reduction of Cr(VI) simultaneously occur, and Bi2MoO6/Bi2MoO6-x homojunction also displays a superior photocatalytic activity, that is 4 and 8 times higher than pure Bi2MoO6, respectively. The remarkably boosted photocatalytic activity could be attributed primarily to the highly efficient separation of photogenerated electrons/holes due to the homojunction and the synergistic effect between phenol oxidation and Cr(VI) reduction. Thus, the present insight provides an effective strategy for designing and preparing highly active photocatalysts with the incorporation of oxygen vacancies modulation and applying for environmental remediation.

18.
RSC Adv ; 11(46): 28674-28684, 2021 Aug 23.
Artigo em Inglês | MEDLINE | ID: mdl-35478547

RESUMO

Localized surface plasmon resonance (LSPR) offers an opportunity to enhance the efficiency of photocatalysis. However, the photocatalysts's plasmonic enhancement is still limited, as most metals/semiconductors depend on LSPR contribution of isolated metal nanoparticles. In the present work, carbon quantum dots (CQDs) and Au nanoparticles (NPs) were simultaneously assembled on the surface of a three-dimensional (3D) spherical Bi2MoO6 (BMO) nanostructure with surface oxygen vacancies (SOVs). The collective excitation of CQDs and Au NPs demonstrated an effective strategy to improve the utilization of up-conversion emission and plasmonic energy. The contribution of CQDs and Au NPs assembled on the surface of BMO (7 wt% CQDs/Au/BMO) realized a photocatalytic phenol degradation enhancement (apparent rate constants, k app/min-1) of 56.5, 9.5 and 3.9, and 2.2-fold increase compared to BMO, BMO-SOVs, Au/BMO and CQDs/BMO, respectively. The as-fabricated 7 wt% CQDs/Au/BMO exhibited the highest mineralization rate for phenol degradation with 72.4% TOC removal rate in 120 min. The excellent photocatalytic performance of CQDs/Au/BMO was attributed to the synergistic effect of CQDs, Au NPs and SOVs. The CQD up-conversion emission synergetically boosts Au NPs' LSPR significantly promoting the separation and migration of photogenerated electron (e-)/hole (h+) pairs, which could improve the oxygen molecule activation process and thereby their ability to generate reactive oxygen species (ROS). The present work is a step forward to understand and construct similar photocatalysts using an entirely reasonable hypothesis of activity enhancement mechanism according to the active species capture experiments and band structure analysis.

19.
Nanomaterials (Basel) ; 9(8)2019 Aug 11.
Artigo em Inglês | MEDLINE | ID: mdl-31405218

RESUMO

Photo-Fenton degradation of pollutants in wastewater is an ideal choice for large scale practical applications. Herein, two-dimensional (2D) in-plane CuS/Bi2WO6 p-n heterostructures have been successfully constructed by an in situ assembly strategy and characterized using XRD, XPS, SEM/TEM, EDX, UV-Vis-DRS, PL, TR-PL, ESR, and VB-XPS techniques. The XPS and the TEM results confirm the formation of CuS/Bi2WO6 heterostructures. The as-constructed CuS/Bi2WO6 showed excellent absorption in visible region and superior charge carrier separation efficiency due to the formation of a type-II heterojunctions. Under visible light irradiation, 0.1% CuS/Bi2WO6 heterostructure exhibited the best photo-Fenton-like catalytic performance. The degradation efficiency of Rhodamine B (RhB, 20 mg·L-1) can reach nearly 100% within 25 min, the apparent rate constant (kapp/min-1) is approximately 40.06 and 3.87 times higher than that of pure CuS and Bi2WO6, respectively. The degradation efficiency of tetracycline hydrochloride (TC-HCl, 40mg·L-1) can reach 73% in 50 min by employing 0.1% CuS/Bi2WO6 heterostructure as a photo-Fenton-like catalyst. The promoted photo-Fenton catalytic activity of CuS/Bi2WO6 p-n heterostructures is partly ascribed to its low carriers recombination rate. Importantly, CuS in CuS/Bi2WO6 heterostructures is conducive to the formation of heterogeneous photo-Fenton catalytic system, in which Bi2WO6 provides a strong reaction site for CuS to avoid the loss of Cu2+ in Fenton reaction, resulting in its excellent stability and reusability. The possible photo-Fenton-like catalytic degradation mechanism of RhB and TC-HCl was also elucidated on the basis of energy band structure analysis and radical scavenger experiments. The present study provides strong evidence for CuS/Bi2WO6 heterostructures to be used as promising candidates for photo-Fenton treatment of organic pollutants.

20.
Bioresour Technol ; 285: 121340, 2019 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-30999193

RESUMO

Fluffy honeycomb-like activated carbon with ultra-high surface area and well-developed hierarchical porous structure is simply prepared from popcorn by NaOH activation as adsorbent for dye removal. The popcorn has an unique fluffy structure, which originates from the corn via a rapid puffing process and is reserved during the following carbonization and NaOH activation. The ultra-high surface area and developed hierarchical porous structure make PDAC-4 show an outstanding adsorption capacity of 7765 mg·g-1 for Rhodamine B (2500 mg·L-1), which is several times higher than those of the adsorbents ever reported. Moreover, PDAC-4 also has excellent adsorption performance for other dyes, such as Congo Red, Methylene Blue and Methyl Orange. The superior adsorption performance of PDACs to organic dyes opens its potential application in the purification of dye wastewater.


Assuntos
Carvão Vegetal , Corantes , Adsorção , Carbono , Azul de Metileno , Porosidade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...