Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 421
Filtrar
1.
ACS Omega ; 9(25): 26941-26950, 2024 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-38947848

RESUMO

Solution blowing is a rapidly developing technology for the rapid and large-scale preparation of nanofibers, driven by its advantages, such as wide adaptability to raw materials, simple and safe operation, and ease of scalable production. Most of the research related to solution blowing mainly focuses on the fiber spinning and forming principle, fiber structure and properties, and the development of new materials. Limited studies have focused on the airflow field and fiber motion in solution blowing. In this paper, nine nozzles for solution blowing with varying geometrical parameters were designed by adjusting the outer nozzle diameter, inner nozzle outstretched distance, and inner nozzle diameter. The centerline airflow velocity, turbulence intensity, and velocity distribution of the solution blowing were analyzed using the numerical simulation method. The results showed that the outer nozzle diameter had the greatest influence on the air velocity and turbulence intensity. The airflow velocity increased and the turbulence intensity decreased with the increase of the outer nozzle diameter. The inner nozzle outstretched distance only affected the airflow convergence point and had less effect on the airflow velocity and turbulence intensity. The captured trajectory of the polymer jet initially shows a straight or slightly curved development that eventually diverges from the airflow field. With an increasing distance, dispersed fibers exhibit instability, including loop formation, bonding, and separation. The experimental observation of fiber morphology in the solution-blowing web further verified the instability during the fiber movement.

2.
Environ Int ; 190: 108854, 2024 Jun 27.
Artigo em Inglês | MEDLINE | ID: mdl-38950496

RESUMO

Multidrug-resistant bacteria and multi-resistance genes in sludge have become a serious issue for public health. It is imperative to develop feasible and environmentally friendly methods of sludge composting to alleviate multidrug resistance genes. Plant-derived essential oil is an effective natural and eco-friendly antibacterial, which has great utilization in inhibiting pathogens in the agricultural industry. Nevertheless, the application of plant-derived essential oil to control pathogenic bacteria and antibiotic resistance in composting has not been reported. This study conducted a composting system by adding plant-derived essential oil i.e., oregano essential oil (OEO), to sludge composting. The findings indicated that multidrug resistance genes and priority pathogens (critical, high, and medium categories) were reduced by (17.0 ± 2.2)% and (26.5 ± 3.0)% in the addition of OEO (OH treatment) compared to control. Besides, the OH treatment changed the bacterial community and enhanced the gene sequences related to carbohydrate metabolism in compost microorganisms. Mantel test and variation partitioning analysis revealed that the target virulence factors (VFs), target mobile genetic elements (MGEs), and priority pathogens were the most important factors affecting multidrug resistance in composting. The OH treatment could significantly inhibit the target VFs, target MGEs, and priority pathogens, which were helpful for the suppression and elimination of multidrug resistance genes. These findings provide new insights into the regulation of multidrug resistance genes during sludge composting and a novel way to diminish the environmental risk of antibiotic resistance.

3.
J Exp Clin Cancer Res ; 43(1): 183, 2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38951916

RESUMO

BACKGROUND: Leukocyte Ig-like receptor B family 4 (LILRB4) as an immune checkpoint on myeloid cells is a potential target for tumor therapy. Extensive osteolytic bone lesion is the most characteristic feature of multiple myeloma. It is unclear whether ectopic LILRB4 on multiple myeloma regulates bone lesion. METHODS: The conditioned medium (CM) from LILRB4-WT and -KO cells was used to analyze the effects of LILRB4 on osteoclasts and osteoblasts. Xenograft, syngeneic and patient derived xenograft models were constructed, and micro-CT, H&E staining were used to observe the bone lesion. RNA-seq, cytokine array, qPCR, the activity of luciferase, Co-IP and western blotting were used to clarify the mechanism by which LILRB4 mediated bone damage in multiple myeloma. RESULTS: We comprehensively analyzed the expression of LILRB4 in various tumor tissue arrays, and found that LILRB4 was highly expressed in multiple myeloma samples. The patient's imaging data showed that the higher the expression level of LILRB4, the more serious the bone lesion in patients with multiple myeloma. The conditioned medium from LILRB4-WT not -KO cells could significantly promote the differentiation and maturation of osteoclasts. Xenograft, syngeneic and patient derived xenograft models furtherly confirmed that LILRB4 could mediate bone lesion of multiple myeloma. Next, cytokine array was performed to identify the differentially expressed cytokines, and RELT was identified and regulated by LILRB4. The overexpression or exogenous RELT could regenerate the bone damage in LILRB4-KO cells in vitro and in vivo. The deletion of LILRB4, anti-LILRB4 alone or in combination with bortezomib could significantly delay the progression of bone lesion of multiple myeloma. CONCLUSIONS: Our findings indicated that LILRB4 promoted the bone lesion by promoting the differentiation and mature of osteoclasts through secreting RELT, and blocking LILRB4 singling pathway could inhibit the bone lesion.


Assuntos
Mieloma Múltiplo , Receptores Imunológicos , Transdução de Sinais , Mieloma Múltiplo/metabolismo , Mieloma Múltiplo/patologia , Mieloma Múltiplo/genética , Humanos , Camundongos , Animais , Receptores Imunológicos/metabolismo , Receptores Imunológicos/genética , NF-kappa B/metabolismo , Glicoproteínas de Membrana/metabolismo , Glicoproteínas de Membrana/genética , Linhagem Celular Tumoral , Osteoclastos/metabolismo , Ensaios Antitumorais Modelo de Xenoenxerto
4.
Environ Res ; : 119561, 2024 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-38972345

RESUMO

Due to rapid urbanization, the Beibu Gulf, a semi-closed gulf in the northwestern South China Sea, faces escalating ecological and environmental threats. Understanding the assembly mechanisms and driving factors of bacterioplankton in the Beibu Gulf is crucial for preserving its ecological functions and services. In the present study, we investigated the spatiotemporal dynamics of bacterioplankton communities and their assembly mechanisms in the Beibu Gulf based on the high-throughput sequencing of the bacterial 16S rRNA gene. Results showed significantly higher bacterioplankton diversity during the wet season compared to the dry season. Additionally, distinct seasonal variations in bacterioplankton composition were observed, characterized by an increase in Cyanobacteria and Thermoplasmatota and a decrease in Proteobacteria and Bacteroidota during the wet season. Null model analysis revealed that stochastic processes governed bacterioplankton community assembly in the Beibu Gulf, with drift and homogenizing dispersal dominating during the dry and wet seasons, respectively. Enhanced deterministic assembly of bacterioplankton was also observed during the wet season. Redundancy and random forest model analyses identified the physical properties (e.g., salinity and temperature) and nutrient content (e.g., nitrate) of water as primary environmental drivers influencing bacterioplankton dynamics. Moreover, variation partitioning and distance-decay of similarity revealed that environmental filtering played a significant role in shaping bacterioplankton variations in this rapidly developed coastal ecosystem. These findings advance our understanding of bacterioplankton assembly in coastal ecosystems and establish a theoretical basis for effective ecological health management amidst ongoing global changes.

5.
Sci Total Environ ; : 174534, 2024 Jul 08.
Artigo em Inglês | MEDLINE | ID: mdl-38986690

RESUMO

Arsenic, a toxicant widely distributed in the environment, is considered as a risk factor for liver fibrosis. At present, the underlying mechanism still needs to be explored. In the present study, we found that, for mice, chronic exposure to arsenic induced liver fibrosis, activated the NLRP3 inflammasome, and increased the levels of reactive oxygen species (ROS). After hepatocytes were co-cultured with hepatic stellate cells (HSCs), we observed the arsenic-activated NLRP3 inflammasome in hepatocytes, and the co-cultured HSCs were activated. Further, we found that, in livers of mice, arsenic disturbed GSH metabolism and promoted protein S-glutathionylation. A 3D molecular docking simulation suggested that NLRP3 binds with GSH, which was confirmed by immunoprecipitation experiments. N-acetylcysteine (NAC) increased the levels of GSH in hepatocytes, which suppressed the S-glutathionylation of NLRP3 and blocked arsenic-induced activation of the NLRP3 inflammasome. Mechanistically, an imbalance of the redox state induced by arsenic promotes the S-glutathionylation of NLRP3, which regulates activation of the NLRP3 inflammasome, leading into the activation of HSCs. Moreover, NAC increases the levels of GSH to block arsenic-induced S-glutathionylation of NLRP3, thereby blocking arsenic-induced liver fibrosis. Thus, via activating HSCs, the S-glutathionylation of NLRP3 in hepatocytes is involved in arsenic-induced liver fibrosis, and, for hepatocytes, NAC alleviates these effects by increasing the levels of GSH. These results reveal a new mechanism and provide a possible therapeutic target for the liver fibrosis induced by environmental factors.

6.
Front Immunol ; 15: 1413177, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38903498

RESUMO

Introduction: Type 1 diabetes (T1D) is an autoimmune disease characterized by the destruction of insulin-producing ß cells. Toll-like receptor 9 (TLR9) plays a role in autoimmune diseases, and B cell-specific TLR9 deficiency delays T1D development. Gut microbiota are implicated in T1D, although the relationship is complex. However, the impact of B cell-specific deficiency of TLR9 on intestinal microbiota and the impact of altered intestinal microbiota on the development of T1D are unclear. Objectives: This study investigated how gut microbiota and the intestinal barrier contribute to T1D development in B cell-specific TLR9-deficient NOD mice. Additionally, this study explored the role of microbiota in immune regulation and T1D onset. Methods: The study assessed gut permeability, gene expression related to gut barrier integrity, and gut microbiota composition. Antibiotics depleted gut microbiota, and fecal samples were transferred to germ-free mice. The study also examined IL-10 production, Breg cell differentiation, and their impact on T1D development. Results: B cell-specific TLR9-deficient NOD mice exhibited increased gut permeability and downregulated gut barrier-related gene expression. Antibiotics restored gut permeability, suggesting microbiota influence. Altered microbiota were enriched in Lachnospiraceae, known for mucin degradation. Transferring this microbiota to germ-free mice increased gut permeability and promoted IL-10-expressing Breg cells. Rag-/- mice transplanted with fecal samples from Tlr9 fl/fl Cd19-Cre+ mice showed delayed diabetes onset, indicating microbiota's impact. Conclusion: B cell-specific TLR9 deficiency alters gut microbiota, increasing gut permeability and promoting IL-10-expressing Breg cells, which delay T1D. This study uncovers a link between TLR9, gut microbiota, and immune regulation in T1D, with implications for microbiota-targeted T1D therapies.


Assuntos
Diabetes Mellitus Tipo 1 , Microbioma Gastrointestinal , Interleucina-10 , Camundongos Endogâmicos NOD , Receptor Toll-Like 9 , Animais , Receptor Toll-Like 9/deficiência , Receptor Toll-Like 9/genética , Receptor Toll-Like 9/metabolismo , Microbioma Gastrointestinal/imunologia , Interleucina-10/metabolismo , Camundongos , Diabetes Mellitus Tipo 1/imunologia , Diabetes Mellitus Tipo 1/microbiologia , Camundongos Knockout , Linfócitos B Reguladores/imunologia , Feminino , Linfócitos B/imunologia , Linfócitos B/metabolismo
7.
Artigo em Inglês | MEDLINE | ID: mdl-38941864

RESUMO

Cipangopaludina chinensis, as a financially significant species in China, represents a gastropod in nature which frequently encounters starvation stress owing to its limited prey options. However, the underlying response mechanisms to combat starvation have not been investigated in depth. We collected C. chinensis under several times of starvation stress (0, 7, 30, and 60 days) for nutrient, biochemical characteristics and transcriptome analyses. The results showed that prolonged starvation stress (> 30 days) caused obvious fluctuations in the nutrient composition of snails, with dramatic reductions in body weight, survival and digestive enzyme activity (amylase, protease, and lipase), and markedly enhanced the antioxidant enzyme activities of the snails. Comparative transcriptome analyses revealed 3538 differentially expressed genes (DEGs), which were significantly associated with specific starvation stress-responsive pathways, including oxidative phosphorylation and alanine, aspartate, and glutamate metabolism. Then, we identified 40 candidate genes (e.g., HACD2, Cp1, CYP1A2, and GPX1) response to starvation stress through STEM and WGCNA analyses. RT-qPCR verified the accuracy and reliability of the high-throughput sequencing results. This study provides insights into snail overwintering survival and the potential regulatory mechanisms of snail adaptation to starvation stress.

8.
bioRxiv ; 2024 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-38853935

RESUMO

Background Pulmonary fibrosis (PF) is a rare lung disease with diverse pathogenesis and multiple interconnected underlying biological mechanisms. Mosaic loss of chromosome Y (mLOY) is one of the most common forms of acquired chromosome abnormality in men, which has been reported to be associated with increased risk of various chronic progressive diseases including fibrotic diseases. However, the exact role of mLOY in the development of PF remains elusive and to be elucidated. Methods: We adopted three complementary approaches to explore the role of mLOY in the pathogenesis of PF. We used copy number on chromosome Y to estimate mLOY comparing patients in PROFILE and gnomAD cohorts and between cases and control patients from the GE100KGP cohort. Correlation of mLOY with demographic and clinical variables was tested using patients from PROFILE cohort. Lung single-cell transcriptomic data were analysed to assess the cell types implicated in mLOY. We performed Mendelian randomisation to examine the causal relationship between mLOY, IPF, and telomere length. Results: The genetic analysis suggests that mLOY is found in PF from both case cohorts but when compared with an age matched population the effect is minimal (P = 0.0032). mLOY is related to age (P = 0.00021) and shorter telomere length (P = 0.0081) rather than PF severity or progression. Single-cell analysis indicates that mLOY appears to be found primarily in immune cells and appears to be related to presence and severity of fibrosis. Mendelian randomisation demonstrates that mLOY is not on the causal pathway for IPF, but partial evidence supports that telomere shortening is on the causal pathway for mLOY. Conclusion: Our study confirms the existence of mLOY in PF patients and suggests that mLOY is not a major driver of IPF. The combined evidence suggests a triangulation model where telomere shortening leads to both IPF and mLOY.

9.
Biol Trace Elem Res ; 2024 Jun 03.
Artigo em Inglês | MEDLINE | ID: mdl-38831176

RESUMO

Arsenic is an environmental pollutant that has garnered considerable attention from the World Health Organization. Liver fibrosis is an advanced pathological stage of liver injury that can be caused by chronic arsenic exposure and has the potential to be reversed to prevent cirrhosis and hepatic malignancies. However, effective treatment options are currently limited. Given the profibrogenic effect of hepatocyte senescence, we established a rat model of sub-chronic sodium arsenite exposure and investigated the ability of resveratrol (RSV), a potential anti-senescence agent, to ameliorate arsenic-induced liver fibrosis and elucidate the underlying mechanism from the perspective of hepatocyte senescence. The results demonstrated that RSV was capable of mitigating fibrosis phenotypes in rat livers, including the activation of hepatic stellate cell (HSC), the generation of extracellular matrix, and the deposition of collagen fibers in the liver vascular zone, which are all induced by arsenic exposure. Furthermore, as an activator of the longevity factor SIRT1, RSV antagonized the arsenic-induced inhibition of SIRT1 expression, thereby restoring the suppression of the senescence protein p16 by SIRT1. This prevented arsenic-induced hepatocyte senescence, manifesting as a decrease in telomere shortening and a reduction in the release of senescence-associated secretory phenotype (SASP)-related proteins. In conclusion, this study demonstrated that RSV counteracts arsenic-induced hepatocyte senescence and the release of SASP-related proteins by restoring the inhibitory effect of SIRT1 on p16, thereby suppressing the activation of fibrotic phenotypes and mitigating liver fibrosis. These findings provide new insights for understanding the mechanism of arsenic-induced liver fibrosis, and more importantly, they reveal novel potential interventional approaches.

10.
Environ Res ; 257: 119298, 2024 May 31.
Artigo em Inglês | MEDLINE | ID: mdl-38823616

RESUMO

Antibiotic resistance poses a considerable global public health concern, leading to heightened rates of illness and mortality. However, the impact of seasonal variations and environmental factors on the health risks associated with antibiotic resistance genes (ARGs) and their assembly mechanisms is not fully understood. Based on metagenomic sequencing, this study investigated the antibiotic resistome, mobile genetic elements (MGEs), and microbiomes in a subtropical coastal ecosystem of the Beibu Gulf, China, over autumn and winter, and explored the factors influencing seasonal changes in ARG and MGE abundance and diversity. Results indicated that ARG abundance and diversity were higher in winter than in autumn, with beta-lactam and multidrug resistance genes being the most diverse and abundant, respectively. Similarly, MGE abundance and diversity increased in winter and were strongly correlated with ARGs. In contrast, more pronounced associations between microbial communities, especially archaea, and the antibiotic resistome were observed in autumn than in winter. The co-occurrence network identified multiple interactions between MGEs and various multidrug efflux pumps in winter, suggesting a potential for ARG dissemination. Multivariate correlation analyses and path modeling indicated that environmental factors driving microbial community changes predominantly influenced antibiotic resistome assembly in autumn, while the relative importance of MGEs increased significantly in winter. These findings suggest an elevated health risk associated with antimicrobial resistance in the Beibu Gulf during winter, attributed to the dissemination of ARGs by horizontal gene transfer. The observed seasonal variations highlight the dynamic nature of antibiotic resistance dissemination in coastal ecosystems, emphasizing the need for comprehensive surveillance and management measures to address the growing threat of antimicrobial resistance in vulnerable environments.

12.
Opt Lett ; 49(11): 3074-3077, 2024 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-38824331

RESUMO

Light-emitting diode (LED)-optical communication is a novel spectrum communication with wide field of view (FOV), light weight, and long-distance free-space capabilities. Due to atmospheric turbulence attenuation and pointing errors caused by long-distance communication, this Letter proposes a multi-pixel channel joint maximum likelihood (JML) reception method using a highly sensitive silicon photomultiplier (SiPM). To evaluate the performance of the SiPM under mobile terminal jittering communication, we analyze the effect of optical transmitting power, pointing errors, and signal-to-noise ratio (SNR) gain on optical communication by comparing JML with signal channel using the maximum likelihood (ML) algorithm. Both simulation analysis and experimental results demonstrate that the proposed JML algorithm to process signals received from SiPM multi-pixel channels can effectively mitigate the impact of pointing errors on the bit error rate (BER) of optical communications by two orders of magnitude at large jitter radians and SNR.

13.
FASEB J ; 38(10): e23639, 2024 May 31.
Artigo em Inglês | MEDLINE | ID: mdl-38742798

RESUMO

We tested the hypothesis that the biosensor capability of the endometrium is mediated in part, by the effect of different cargo contained in the extracellular vesicles secreted by the conceptus during the peri-implantation period of pregnancy. We transferred Bos taurus taurus embryos of different origin, in vivo (high developmental potential (IV)), in vitro (intermediate developmental potential (IVF)), or cloned (low developmental potential (NT)), into Bos taurus indicus recipients. Extracellular vesicles (EVs) recovered from Day 16 conceptus-conditioned medium were characterized and their microRNA (miRNA) cargo sequenced alongside RNA sequencing of their respective endometria. There were substantial differences in the endometrial response to in vivo versus in vitro and in vivo versus cloned conceptuses (1153 and 334DEGs respectively) with limited differences between in vitro Vs cloned conceptuses (36 DEGs). The miRNA cargo contained in conceptus-derived EVs was similar between all three groups (426 miRNA in common). Only 8 miRNAs were different between in vivo and cloned conceptuses, while only 6 miRNAs were different between in vivo and in vitro-derived conceptuses. Treatment of endometrial epithelial cells with mimic or inhibitors for miR-128 and miR-1298 changed the proteomic content of target cells (96 and 85, respectively) of which mRNAs are altered in the endometrium in vivo (PLXDC2, COPG1, HSPA12A, MCM5, TBL1XR1, and TTF). In conclusion, we have determined that the biosensor capability of the endometrium is mediated in part, by its response to different EVs miRNA cargo produced by the conceptus during the peri-implantation period of pregnancy.


Assuntos
Endométrio , Vesículas Extracelulares , MicroRNAs , Feminino , Endométrio/metabolismo , Endométrio/citologia , Animais , Vesículas Extracelulares/metabolismo , MicroRNAs/metabolismo , MicroRNAs/genética , Bovinos , Gravidez , Técnicas Biossensoriais/métodos , Implantação do Embrião/fisiologia , Embrião de Mamíferos/metabolismo
14.
J Chem Phys ; 160(18)2024 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-38726940

RESUMO

The effects of the solution's dielectric properties on the conformation and dynamics of star-shaped polyelectrolytes in shear flow are investigated using a hybrid simulation method coupling multi-particle collision dynamics and molecular dynamics. The simulation results showed that by modulating the dielectric properties of the solution, star-shaped polyelectrolytes showed a three-step dynamic behavior transition from tumbling to tank-treading to tumbling dynamics under shear flow. The analysis indicated that this distinct transition in dynamics could be attributed to the uneven distribution of counterions induced by shear on the chain, resulting in a change in the polyelectrolyte conformation and degree of segmental alignment in arms. These findings contribute to a comprehensive understanding of the non-equilibrium dynamics of star-shaped polyelectrolytes in shear flow and offer a viable approach for controlling the dynamic behavior of star-shaped polyelectrolytes by adjusting the dielectric properties of the solution.

15.
ACS Sens ; 9(4): 2134-2140, 2024 04 26.
Artigo em Inglês | MEDLINE | ID: mdl-38626725

RESUMO

Imaging the surface charge of biomolecules such as proteins and DNA, is crucial for comprehending their structure and function. Unfortunately, current methods for label-free, sensitive, and rapid imaging of the surface charge of single DNA molecules are limited. Here, we propose a plasmonic microscopy strategy that utilizes charge-sensitive single-crystal monolayer WS2 materials to image the local charge density of a single λ-DNA molecule. Our study reveals that WS2 is a highly sensitive charge-sensitive material that can accurately measure the local charge density of λ-DNA with high spatial resolution and sensitivity. The consistency of the surface charge density values obtained from the single-crystal monolayer WS2 materials with theoretical simulations demonstrates the reliability of our approach. Our findings suggest that this class of materials has significant implications for the development of label-free, scanning-free, and rapid optical detection and charge imaging of biomolecules.


Assuntos
DNA , DNA/química , Compostos de Tungstênio/química , Microscopia/métodos
16.
Heliyon ; 10(7): e28493, 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38586328

RESUMO

The risk prognosis model is a statistical model that uses a set of features to predict whether an individual will develop a specific disease or clinical outcome. It can be used in clinical practice to stratify disease severity and assess risk or prognosis. With the advancement of large-scale second-generation sequencing technology, along Prognosis models for osteosarcoma are increasingly being developed as large-scale second-generation sequencing technology advances and clinical and biological data becomes more abundant. This expansion greatly increases the number of prognostic models and candidate genes suitable for clinical use. This article will present the predictive effects and reliability of various prognosis models, serving as a reference for their evaluation and application.

17.
Ecotoxicol Environ Saf ; 275: 116282, 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38564859

RESUMO

The metalloid arsenic, known for its toxic properties, is widespread presence in the environment. Our previous research has confirmed that prolonged exposure to arsenic can lead to liver fibrosis injury in rats, while the precise pathogenic mechanism still requires further investigation. In the past few years, the Nod-like receptor protein 3 (NLRP3) inflammasome has been found to play a pivotal role in the occurrence and development of liver injury. In this study, we administered varying doses of sodium arsenite (NaAsO2) and 10 mg/kg.bw MCC950 (a particular tiny molecular inhibitor targeting NLRP3) to Sprague-Dawley (SD) rats for 36 weeks to explore the involvement of NLRP3 inflammasome in NaAsO2-induced liver injury. The findings suggested that prolonged exposure to NaAsO2 resulted in pyroptosis in liver tissue of SD rats, accompanied by the fibrotic injury, extracellular matrix (ECM) deposition and liver dysfunction. Moreover, long-term NaAsO2 exposure activated NLRP3 inflammasome, leading to the release of pro-inflammatory cytokines in liver tissue. After treatment with MCC950, the induction of NLRP3-mediated pyroptosis and release of pro-inflammatory cytokines were significantly attenuated, leading to a decrease in the severity of liver fibrosis and an improvement in liver function. To summarize, those results clearly indicate that hepatic fibrosis and liver dysfunction induced by NaAsO2 occur through the activation of NLRP3 inflammasome-mediated pyroptosis, shedding new light on the potential mechanisms underlying arsenic-induced liver damage.


Assuntos
Arsênio , Hepatopatias , Ratos , Animais , Inflamassomos/metabolismo , Ratos Sprague-Dawley , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Proteínas NLR , Piroptose , Modelos Animais de Doenças , Fibrose , Cirrose Hepática/induzido quimicamente , Sulfonamidas/farmacologia , Citocinas/metabolismo
18.
PLoS One ; 19(4): e0301428, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38625862

RESUMO

In urban areas with limited underground space, the new tunnel construction introduces additional loads and displacements to existing tunnels, raising serious safety concerns. These concerns become particularly pronounced in the case of closely undercrossing excavation at zero-distance. The conventional elastic foundation beam model, which assumes constant reaction coefficients for the subgrade, fails to account for foundation loss. In this study, the existing tunnel is modeled as an Euler-Bernoulli beam supported by the Pasternak elastic foundation, and the foundation loss caused by zero-distance undercrossing excavations is considered. Furthermore, an analytical solution is proposed to evaluate the mechanical response in segments, by establishing governing differential equations and boundary conditions for the excavation and neutral zones, and underpinning loads are also considered. The analytical solution is validated in two case studies. Finally, a parametric analysis is performed to explore the influence of various parameters on the mechanical response of the existing tunnel.

19.
Food Environ Virol ; 2024 Apr 18.
Artigo em Inglês | MEDLINE | ID: mdl-38635140

RESUMO

There is growing evidence that severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) contaminates the marine environment and is bioaccumulated in filter-feeding shellfish. Previous study shows the Pacific oyster tissues can bioaccumulate the SARS-CoV-2, and the oyster heat shock protein 70 (oHSP70) may play as the primary attachment receptor to bind SARS-CoV-2's recombinant spike protein S1 subunit (rS1). However, detailed information about the interaction between rS1 and oHSP70 is still unknown. In this study, we confirmed that the affinity of recombinant oHSP70 (roHSP70) for rS1 (KD = 20.4 nM) is comparable to the receptor-binding affinity of rACE2 for rS1 (KD = 16.7 nM) by surface plasmon resonance (SPR)-based Biacore and further validated by enzyme-linked immunosorbent assay (ELISA). Three truncated proteins (roHSP70-N/C/M) and five mutated proteins (p.I229del, p.D457del, p.V491_K495del, p.K556I, and p.ΣroHSP70) were constructed according to the molecular docking results. All three truncated proteins have significantly lower affinity for rS1 than the full-length roHSP70, indicating that all three segments of roHSP70 are involved in binding to rS1. Further, the results of SPR and ELISA showed that all five mutant proteins had significantly lower affinity for rS1 than roHSP70, suggesting that amino acids at these sites are involved in binding to rS1. This study provides a preliminary theoretical basis for the bioaccumulation of SARS-CoV-2 in oyster tissues or using roHSP70 as the capture unit to selectively enrich virus particles for detection.

20.
Food Funct ; 15(10): 5429-5438, 2024 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-38644728

RESUMO

Antibiotics are unavoidable to be prescribed to subjects due to different reasons, and they decrease the relative abundance of beneficial microbes. Inulin, a fructan type of polysaccharide carbohydrate, on the contrary, could promote the growth of beneficial microbes. In this study, we investigated the effect of inulin on antibiotic-induced intestinal microbiota dysbiosis and compared their overall impact at different supplementation stages, i.e., post-antibiotic, at the time of antibiotic administration or prior to antibiotic treatment, in the C57BL/6 mice model. Although supplementation of inulin after antibiotic treatment could aid in the reconstruction of the intestinal microbial community its overall impact was limited and no remarkable differences were identified as compared to the spontaneous restoration. On the contrary, the effect of simultaneous and pre-supplementation was more remarkable. Simultaneous inulin supplementation significantly mitigated the antibiotic-induced dysbiosis based on alterations as evaluated using weighted and unweighted UniFrac distance between baseline and after treatment. Moreover, comparing the effect of simultaneous supplementation, pre-supplemented inulin further mitigated the antibiotic-induced dysbiosis, especially on the relative abundance of dominant microbes. Collectively, the current study found that the use of inulin could alleviate antibiotic-induced microbiota dysbiosis, and the best supplementation stage (overall effect as evaluated by beta diversity distance changes) was before the antibiotic treatment, then simultaneous supplementation and supplementation after the antibiotic treatment.


Assuntos
Antibacterianos , Disbiose , Microbioma Gastrointestinal , Inulina , Camundongos Endogâmicos C57BL , Inulina/farmacologia , Animais , Disbiose/microbiologia , Disbiose/tratamento farmacológico , Disbiose/induzido quimicamente , Microbioma Gastrointestinal/efeitos dos fármacos , Camundongos , Antibacterianos/farmacologia , Masculino , Suplementos Nutricionais , Bactérias/classificação , Bactérias/efeitos dos fármacos , Bactérias/isolamento & purificação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...