Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 30
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Artigo em Inglês | MEDLINE | ID: mdl-38980942

RESUMO

Intelligent colorimetric freshness indicator is a low-cost way to intuitively monitor the freshness of fresh food. A colorimetric strip sensor array was prepared by p-dimethylaminocinnamaldehyde (PDL)-doped poly(vinyl alcohol) (PVA) and chitosan (Chit) for the quantitative analysis of indole, which is an indicator of shrimp freshness. As a result of indole simulation, the array strip turned from faint yellow to pink or mulberry color with the increasing indole concentration, like a progress bar. The indicator film exhibited excellent permeability, mechanical and thermal stability, and color responsiveness to indole, which was attributed to the interactions between PDL and Chit/PVA. Furthermore, the colorimetric strip sensor array provided a good relationship between the indole concentration and the color intensity within a range of 50-350 ppb. The pathogens and spoilage bacteria of shrimp possessed the ability to produce indole, which caused the color changes of the strip sensor array. In the shrimp freshness monitoring experiment, the color-changing progress of the strip sensor array was in agreement with the simulation and could distinguish the shrimp freshness levels. The image classification system based on deep learning were developed, the accuracies of four DCNN algorithms are above 90%, with VGG16 achieving the highest accuracy at 97.89%. Consequently, a "progress bar" strip sensor array has the potential to realize nondestructive, more precise, and commercially available food freshness monitoring using simple visual inspection and intelligent equipment identification.

2.
Acta Biomater ; 181: 347-361, 2024 06.
Artigo em Inglês | MEDLINE | ID: mdl-38702010

RESUMO

Cascade-reaction containers generating reactive oxygen species (ROS) as an alternative for antibiotic-based strategies for bacterial infection control, require endogenous oxygen-sources and ROS-generation close to or preferably inside target bacteria. Here, this is achieved by cetyltrimethylammonium-chloride (CTAC) assisted in situ metabolic labeling and incorporation of mesoporous SiO2-nanoparticles, dual-loaded with glucose-oxidase and Fe3O4-nanoparticles as cascade-reaction containers, inside bacterial cell walls. First, azide-functionalized d-alanine (D-Ala-N3) was inserted in cell wall peptidoglycan layers of growing Gram-positive pathogens. In Gram-negatives, this could only be achieved after outer lipid-membrane permeabilization, using a low concentration of CTAC. Low concentrations of CTAC had no adverse effect on in vitro blood clotting or hemolysis nor on the health of mice when blood-injected. Next, dibenzocyclooctyne-polyethylene-glycol modified, SiO2-nanoparticles were in situ click-reacted with d-Ala-N3 in bacterial cell wall peptidoglycan layers. Herewith, a two-step cascade-reaction is facilitated inside bacteria, in which glucose-oxidase generates H2O2 at endogenously-available glucose concentrations, while subsequently Fe3O4-nanoparticles catalyze generation of •OH from the H2O2 generated. Generation of •OH inside bacterial cell walls by dual-loaded mesoporous SiO2-nanoparticles yielded more effective in vitro killing of both planktonic Gram-positive and Gram-negative bacteria suspended in 10 % plasma than SiO2-nanoparticles solely loaded with glucose-oxidase. Gram-positive or Gram-negative bacterially induced sepsis in mice could be effectively treated by in situ pre-treatment with tail-vein injected CTAC and d-Ala-N3, followed by injection of dual-loaded cascade-reaction containers without using antibiotics. This makes in situ metabolic incorporation of cascade-reaction containers as described attractive for further investigation with respect to the control of other types of infections comprising planktonic bacteria. STATEMENT OF SIGNIFICANCE: In situ metabolic-incorporation of cascade-reaction-containers loaded with glucose-oxidase and Fe3O4 nanoparticles into bacterial cell-wall peptidoglycan is described, yielding ROS-generation from endogenous glucose, non-antibiotically killing bacteria before ROS inactivates. Hitherto, only Gram-positives could be metabolically-labeled, because Gram-negatives possess two lipid-membranes. The outer membrane impedes direct access to the peptidoglycan. This problem was solved by outer-membrane permeabilization using a quaternary-ammonium compound. Several studies on metabolic-labeling perform crucial labeling steps during bacterial-culturing that in real-life should be part of a treatment. In situ metabolic-incorporation as described, can be applied in well-plates during in vitro experiments or in the body as during in vivo animal experiments. Surprisingly, metabolic-incorporation proceeded unhampered in blood and a murine, bacterially-induced sepsis could be well treated.


Assuntos
Peptidoglicano , Espécies Reativas de Oxigênio , Sepse , Animais , Espécies Reativas de Oxigênio/metabolismo , Sepse/tratamento farmacológico , Sepse/metabolismo , Camundongos , Nanopartículas/química , Dióxido de Silício/química , Bactérias Gram-Positivas/efeitos dos fármacos , Bactérias Gram-Negativas/efeitos dos fármacos
3.
Food Chem ; 453: 139713, 2024 Sep 30.
Artigo em Inglês | MEDLINE | ID: mdl-38772307

RESUMO

Due to their high water content, frozen mushrooms (Agaricus bisporus) were greatly affected by ice crystal formation, which can lead to the destruction of tissue structure, serious browning, high juice loss, and difficulty in maintaining good sensory characteristics. In order to improve the quality of frozen Agaricus bisporus, this study employed Artificial neural network and genetic algorithm (ANN-GA) to optimize the amount of composite color protectant, and identified the optimal freezing conditions for freezing Agaricus bisporus by determining the freezing curves under different magnetic field-assisted freezing conditions, the color variance, texture and structure, drip loss, and distribution of moisture. Furthering, using X-ray µCT three dimensional images were taken to characterize the microstructure of the samples. Among them, the 6 mT magnetic field-assisted freezing treatment group was significantly better than the control group, and the results showed that the magnetic field-assisted freezing combined with chemical color protectant as a composite processing technology improved the quality of frozen Agaricus bisporus. This provides a theoretical basis and technical support for enhanced processing of frozen Agaricus bisporus.


Assuntos
Agaricus , Congelamento , Campos Magnéticos , Agaricus/química , Agaricus/efeitos da radiação , Cor , Redes Neurais de Computação , Conservação de Alimentos/métodos , Conservação de Alimentos/instrumentação , Algoritmos
4.
Biomaterials ; 308: 122576, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38640785

RESUMO

Biomaterial-associated infection (BAI) is considered a unique infection due to the presence of a biomaterial yielding frustrated immune-cells, ineffective in clearing local micro-organisms. The involvement of surface-adherent/surface-adapted micro-organisms in BAI, logically points to biomaterial surface-modifications for BAI-control. Biomaterial surface-modification is most suitable for prevention before adhering bacteria have grown into a mature biofilm, while BAI-treatment is virtually impossible through surface-modification. Hundreds of different surface-modifications have been proposed for BAI-control but few have passed clinical trials due to the statistical near-impossibility of benefit-demonstration. Yet, no biomaterial surface-modification forwarded, is clinically embraced. Collectively, this leads us to conclude that surface-modification is a dead-end road. Accepting that BAI is, like most human infections, due to surface-adherent biofilms (though not always to a foreign material), and regarding BAI as a common infection, opens a more-generally-applicable and therewith easier-to-validate road. Pre-clinical models have shown that stimuli-responsive nano-antimicrobials and antibiotic-loaded nanocarriers exhibit prolonged blood-circulation times and can respond to a biofilm's micro-environment to penetrate and accumulate within biofilms, prompt ROS-generation and synergistic killing with antibiotics of antibiotic-resistant pathogens without inducing further antimicrobial-resistance. Moreover, they can boost frustrated immune-cells around a biomaterial reducing the importance of this unique BAI-feature. Time to start exploring the nano-road for BAI-control.


Assuntos
Materiais Biocompatíveis , Biofilmes , Nanotecnologia , Propriedades de Superfície , Animais , Humanos , Antibacterianos/farmacologia , Antibacterianos/uso terapêutico , Materiais Biocompatíveis/química , Biofilmes/efeitos dos fármacos , Nanotecnologia/métodos , Próteses e Implantes , Infecções Relacionadas à Prótese/prevenção & controle
5.
Biomater Sci ; 11(22): 7387-7396, 2023 Nov 07.
Artigo em Inglês | MEDLINE | ID: mdl-37791576

RESUMO

Nanoplatforms with amplified passive tumor targeting and enhanced protein resistance can evade unnecessary uptake by the reticuloendothelial system and achieve high tumor retention for accurate tumor theranostics. To achieve this goal, we here constructed phosphorus core-shell tecto dendrimers (CSTDs) with a rigid aromatic backbone core as a nanoplatform for enhanced fluorescence and single-photon emission computed tomography (SPECT) dual-mode imaging of tumors. In this study, the phosphorus P-G2.5/G3 CSTDs (G denotes generation) were partially conjugated with tetraazacyclododecane tetraacetic acid (DOTA), cyanine5.5 (Cy5.5) and 1,3-propane sulfonate (1,3-PS) and then labeled with 99mTc. The formed P-G2.5/G3-DOTA-Cy5.5-PS CSTDs possess good monodispersity with a particle size of 10.1 nm and desired protein resistance and cytocompatibility. Strikingly, compared to the counterpart material G3/G3-DOTA-Cy5.5-PS with both the core and shell components being soft poly(amidoamine) dendrimers, the developed P-G2.5/G3-DOTA-Cy5.5-PS complexes allow for more efficient cellular uptake and more significant penetration in 3-dimensional tumor spheroids in vitro, as well as more significant tumor retention and accumulation for enhanced dual-mode fluorescence and SPECT (after labelling with 99mTc) tumor imaging in vivo. Our studies suggest that the rigidity of the core for the constructed CSTDs matters in the amplification of the tumor enhanced permeability retention (EPR) effect for improved cancer nanomedicine development.


Assuntos
Dendrímeros , Neoplasias , Humanos , Tomografia Computadorizada de Emissão de Fóton Único , Linhagem Celular Tumoral
6.
ACS Nano ; 17(14): 14014-14031, 2023 07 25.
Artigo em Inglês | MEDLINE | ID: mdl-37428140

RESUMO

Metabolic therapy targeting the metabolic addictions driven by gain-of-function mutations in KRAS is promising in fighting cancer through selective killing of malignant cells without hurting healthy cells. However, metabolic compensation and heterogeneity make current metabolic therapies ineffective. Here, we proposed a biomimetic "Nutri-hijacker" with "Trojan horse" design to induce synthetic lethality in KRAS-mutated (mtKRAS) malignant cells by hitchhiking and reprogramming the metabolic addictions. Nutri-hijacker consisted of the biguanide-modified nanoparticulate albumin that impaired glycolysis and a flavonoid that restrained glutaminolysis after the macropinocytosis of Nutri-hijacker by mtKRAS malignant cells. Nutri-hijacker suppressed the proliferation and spread of mtKRAS malignant cells while lowering tumor fibrosis and immunosuppression. Nutri-hijacker significantly extended the lifespan of pancreatic ductal adenocarcinoma (PDAC)-bearing mice when combined with the hydroxychloroquine-based therapies that failed in clinical trials. Collectively, our findings demonstrated that Nutri-hijacker is a strong KRAS mutation-customized inhibitor and the synthetic lethality based on mtKRAS-driven metabolic addictions might be a promising strategy against PDAC.


Assuntos
Carcinoma Ductal Pancreático , Neoplasias Pancreáticas , Animais , Camundongos , Proteínas Proto-Oncogênicas p21(ras)/genética , Biomimética , Neoplasias Pancreáticas/patologia , Carcinoma Ductal Pancreático/metabolismo , Mutação , Neoplasias Pancreáticas
7.
Acta Pharm Sin B ; 13(2): 834-851, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36873190

RESUMO

Microglial surveillance plays an essential role in clearing misfolded proteins such as amyloid-beta, tau, and α-synuclein aggregates in neurodegenerative diseases. However, due to the complex structure and ambiguous pathogenic species of the misfolded proteins, a universal approach to remove the misfolded proteins remains unavailable. Here, we found that a polyphenol, α-mangostin, reprogrammed metabolism in the disease-associated microglia through shifting glycolysis to oxidative phosphorylation, which holistically rejuvenated microglial surveillance capacity to enhance microglial phagocytosis and autophagy-mediated degradation of multiple misfolded proteins. Nanoformulation of α-mangostin efficiently delivered α-mangostin to microglia, relieved the reactive status and rejuvenated the misfolded-proteins clearance capacity of microglia, which thus impressively relieved the neuropathological changes in both Alzheimer's disease and Parkinson's disease model mice. These findings provide direct evidences for the concept of rejuvenating microglial surveillance of multiple misfolded proteins through metabolic reprogramming, and demonstrate nanoformulated α-mangostin as a potential and universal therapy against neurodegenerative diseases.

8.
Adv Sci (Weinh) ; 10(7): e2204596, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36703613

RESUMO

Mitochondrial dysfunction has been recognized as the key pathogenesis of most neurodegenerative diseases including Alzheimer's disease (AD). The dysregulation of mitochondrial calcium ion (Ca2+ ) homeostasis and the mitochondrial permeability transition pore (mPTP), is a critical upstream signaling pathway that contributes to the mitochondrial dysfunction cascade in AD pathogenesis. Herein, a "two-hit braking" therapeutic strategy to synergistically halt mitochondrial Ca2+ overload and mPTP opening to put the mitochondrial dysfunction cascade on a brake is proposed. To achieve this goal, magnesium ion (Mg2+ ), a natural Ca2+ antagonist, and siRNA to the central mPTP regulator cyclophilin D (CypD), are co-encapsulated into the designed nano-brake; A matrix metalloproteinase 9 (MMP9) activatable cell-penetrating peptide (MAP) is anchored on the surface of nano-brake to overcome the blood-brain barrier (BBB) and realize targeted delivery to the mitochondrial dysfunction cells of the brain. Nano-brake treatment efficiently halts the mitochondrial dysfunction cascade in the cerebrovascular endothelial cells, neurons, and microglia and powerfully alleviates AD neuropathology and rescues cognitive deficits. These findings collectively demonstrate the potential of advanced design of nanotherapeutics to halt the key upstream signaling pathways of mitochondrial dysfunction to provide a powerful strategy for AD modifying therapy.


Assuntos
Doença de Alzheimer , Disfunção Cognitiva , Mitocôndrias , Nanoestruturas , Humanos , Doença de Alzheimer/complicações , Doença de Alzheimer/metabolismo , Doença de Alzheimer/terapia , Cognição , Peptidil-Prolil Isomerase F/metabolismo , Células Endoteliais/metabolismo , Mitocôndrias/metabolismo , Mitocôndrias/patologia , Neurônios/patologia , Disfunção Cognitiva/metabolismo , Disfunção Cognitiva/patologia , Disfunção Cognitiva/terapia , Nanoestruturas/química , Nanoestruturas/uso terapêutico
9.
J Sci Food Agric ; 103(7): 3230-3248, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-36700618

RESUMO

Edible mushrooms are nutritious, tasty, and have medicinal value, which makes them very popular. Fresh mushrooms have a high water content and a crisp texture. They demonstrate strong metabolic activity after harvesting. However, they are prone to textural changes, microbial infestation, and nutritional and flavor loss, and they therefore require appropriate post-harvest processing and preservation. Important factors affecting safety and quality during their processing and storage include their quality, source, microbial contamination, physical damage, and chemical residues. Thus, these aspects should be tested carefully to ensure safety. In recent years, many new techniques have been used to preserve mushrooms, including electrofluidic drying and cold plasma treatment, as well as new packaging and coating technologies. In terms of detection, many new detection techniques, such as nuclear magnetic resonance (NMR), imaging technology, and spectroscopy can be used as rapid and effective means of detection. This paper reviews the new technological methods for processing and detecting the quality of mainstream edible mushrooms. It mainly introduces their working principles and application, and highlights the future direction of preservation, processing, and quality detection technologies for edible mushrooms. Adopting appropriate post-harvest processing and preservation techniques can maintain the organoleptic properties, nutrition, and flavor of mushrooms effectively. The use of rapid, accurate, and non-destructive testing methods can provide a strong assurance of food safety. At present, these new processing, preservation and testing methods have achieved good results but at the same time there are certain shortcomings. So it is recommended that they also be continuously researched and improved, for example through the use of new technologies and combinations of different technologies. © 2023 Society of Chemical Industry.


Assuntos
Agaricales , Conservação de Alimentos/métodos , Dessecação , Tecnologia
10.
J Control Release ; 352: 460-471, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36341930

RESUMO

Exposure of infectious biofilms to dispersants induces high bacterial concentrations in blood that may cause sepsis. Preventing sepsis requires simultaneous biofilm dispersal and bacterial killing. Here, self-targeting DCPA(2-(4-((1,5-bis(octadecenoyl)1,5-dioxopentan-2-yl)carbamoyl)pyridin-1-ium-1-yl)acetate) liposomes with complexed water were self-assembled with ciprofloxacin loaded in-membrane and PEGylated as a lipid-membrane component, together with bromelain loaded in-core. Inside biofilms, DCPA-H2O and PEGylated ciprofloxacin became protonated, disturbing the balance in the lipid-membrane to cause liposome-burst and simultaneous release of bromelain and ciprofloxacin. Simultaneous release of bromelain and ciprofloxacin enhanced bacterial killing in Staphylococcus aureus biofilms as compared with free bromelain and/or ciprofloxacin. After tail-vein injection in mice, liposomes accumulated inside intra-abdominal staphylococcal biofilms. Subsequent liposome-burst and simultaneous release of bromelain and ciprofloxacin yielded degradation of the biofilm matrix by bromelain and higher bacterial killing without inducing septic symptoms as obtained by injection of free bromelain and ciprofloxacin. This shows the advantage of simultaneous release from liposomes of bromelain and ciprofloxacin inside a biofilm.


Assuntos
Bromelaínas , Sepse , Animais , Camundongos , Antibacterianos/farmacologia , Antibacterianos/uso terapêutico , Biofilmes , Ciprofloxacina/farmacologia , Lipídeos , Lipossomos , Testes de Sensibilidade Microbiana , Polietilenoglicóis , Prótons , Sepse/tratamento farmacológico
11.
Molecules ; 27(22)2022 Nov 16.
Artigo em Inglês | MEDLINE | ID: mdl-36432026

RESUMO

(1) Background: Nuclear factor κB (NF-κB) is an important transcriptional regulator that regulates the inflammatory pathway and plays a key role in cellular inflammatory and immune responses. The presence of a high concentration of NF-κB is positively correlated with the severity of inflammation. Therefore, the inhibition of this pathway is an important therapeutic target for the treatment of various types of inflammation; (2) Methods: we designed and synthesized 23 mollugin derivatives and evaluated their inhibitory activity against NF-κB transcription; (3) Results: Compound 6d exhibited the most promising inhibitory activity (IC50 = 3.81 µM) and did not show any significant cytotoxicity against the tested cell lines. Investigation of the mechanism of action indicated that 6d down-regulated NF-κB expression, possibly by suppressing TNF-α-induced expression of the p65 protein. Most of the compounds exhibited potent anti-inflammatory activity. Compound 4f was the most potent compound with 83.08% inhibition of inflammation after intraperitoneal administration, which was more potent than mollugin and the reference drugs (ibuprofen and mesalazine). ADMET prediction analysis indicated that compounds 6d and 4f had good pharmacokinetics and drug-like behavior; (4) Conclusions: Several series of mollugin derivatives were designed, synthesized, and evaluated for NF-κB inhibitory activity and toxicity. These results provide an initial basis for the development of 4f and 6d as potential anti-inflammatory agents.


Assuntos
NF-kappa B , Piranos , Humanos , Inflamação , Injeções Intraperitoneais
12.
Biomacromolecules ; 23(7): 2827-2837, 2022 07 11.
Artigo em Inglês | MEDLINE | ID: mdl-35694854

RESUMO

Conventional small molecular chemical drugs always have challenging limitations in cancer therapy due to their high systemic toxicity and low therapeutic efficacy. Nanotechnology has been applied in drug delivery, bringing new promising potential to realize effective cancer treatment. In this context, we develop here a new nanomicellar drug delivery platform generated by amphiphilic phosphorus dendrons (1-C17G3.HCl), which could form micelles for effective encapsulation of a hydrophobic anticancer drug doxorubicin (DOX) with a high drug loading content (42.4%) and encapsulation efficiency (96.7%). Owing to the unique dendritic rigid structure and surface hydrophilic groups, large steady void space of micelles can be created for drug encapsulation. The created DOX-loaded micelles with a mean diameter of 26.3 nm have good colloidal stability. Strikingly, we show that the drug-free micelles possess good intrinsic anticancer activity and act collectively with DOX to take down breast cancer cells in vitro and the xenografted tumor model in vivo through upregulation of Bax, PTEN, and p53 proteins for enhanced cell apoptosis. Meanwhile, the resulting 1-C17G3.HCl@DOX micelles significantly abolish the toxicity relevant to the free drug. The findings of this study demonstrate a unique nanomicelle-based drug delivery system created with the self-assembling amphiphilic phosphorus dendrons that may be adapted for chemotherapy of different cancer types.


Assuntos
Antineoplásicos , Neoplasias da Mama , Dendrímeros , Antineoplásicos/química , Neoplasias da Mama/tratamento farmacológico , Dendrímeros/química , Doxorrubicina/química , Portadores de Fármacos/química , Sistemas de Liberação de Medicamentos , Feminino , Humanos , Micelas , Fósforo
13.
Biomater Sci ; 10(13): 3575-3584, 2022 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-35635244

RESUMO

Protein therapeutics have been viewed as powerful candidates for cancer treatment by virtue of highly specific bioactivity and minimized adverse effects. However, the intracellular delivery of protein drugs remains enormously challenging due to multiple successive biological barriers in vivo. Herein, a bioinspired nanochaperone is developed to assist proteins in vanquishing the sequential physiological barriers in a holistic manner and enhance synergistic tumor therapy. By concurrently mimicking the N-terminal-binding domain and C-terminal-stabilizing domain of natural chaperones, this nanochaperone can efficiently capture the protein by multiple interactions and hide them in the confined spaces on the surface, serving as a shield to resist enzymatic degradation and avoid immune clearance during blood circulation. Upon reaching the tumor site, the nanochaperone rapidly responds to the acidic tumor microenvironment and turns into partial protonation, acting as a spear to facilitate tumor cellular internalization. More importantly, further protonation of nanochaperone in the lysosome of tumor cells enables it to blast the lysosome and achieve cytosolic protein delivery with reserved bioactivities. Furthermore, this nanochaperone-based protein transduction strategy is demonstrated to combine with small-molecule drugs to synergistically amplify the anti-tumor therapeutic effect in vitro and in vivo, providing a potential platform for the exploitation of diverse combinations of anti-tumor therapies.


Assuntos
Antineoplásicos , Neoplasias , Antineoplásicos/química , Linhagem Celular Tumoral , Sistemas de Liberação de Medicamentos , Humanos , Neoplasias/tratamento farmacológico , Neoplasias/patologia , Microambiente Tumoral
14.
Bioact Mater ; 14: 321-334, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-35386819

RESUMO

Cascade-reaction chemistry can generate reactive-oxygen-species that can be used for the eradication of infectious biofilms. However, suitable and sufficient oxygen sources are not always available near an infection site, while the reactive-oxygen-species generated are short-lived. Therefore, we developed a magnetic cascade-reaction container composed of mesoporous Fe3O4@SiO2 nanoparticles containing glucose-oxidase and l-arginine for generation of reactive-oxygen-species. Glucose-oxidase was conjugated with APTES facilitating coupling to Fe3O4@SiO2 nanoparticles and generation of H2O2 from glucose. l-arginine was loaded into the nanoparticles to generate NO from the H2O2 generated. Using an externally-applied magnetic field, cascade-reaction containers could be homogeneously distributed across the depth of an infectious biofilm. Cascade-reaction containers with coupled glucose-oxidase were effective in killing planktonic, Gram-positive and Gram-negative bacteria. Additional efficacy of the l-arginine based second cascade-reaction was only observed when H2O2 as well as NO were generated in-biofilm. In vivo accumulation of cascade-reaction containers inside abdominal Staphylococcus aureus biofilms upon magnetic targeting was observed real-time in living mice through an implanted, intra-vital window. Moreover, vancomycin-resistant, abdominal S. aureus biofilms could be eradicated consuming solely endogenous glucose, without any glucose addition. Herewith, a new, non-antibiotic-based infection-control strategy has been provided, constituting a welcome addendum to the shrinking clinical armamentarium to control antibiotic-resistant bacterial infections.

15.
J Mater Chem B ; 10(14): 2316-2322, 2022 04 06.
Artigo em Inglês | MEDLINE | ID: mdl-35129564

RESUMO

Self-targeting antimicrobial platforms have yielded new possibilities for the treatment of infectious biofilms. Self-targeting involves stealth transport through the blood circulation towards an infectious biofilm, where the antimicrobial platform penetrates and accumulates in a biofilm in response to a change in environmental conditions, such as local pH. In a final step, nano-antimicrobials need to be activated or the antimicrobial cargo of nanocarriers released. Zwitterions possess both cationic and anionic groups, allowing full reversal in zeta potential from below to above zero in response to a change in environmental conditions. Electrolyte-based platforms generally do not have the ability to change their zeta potentials from below to above zero. Zwitterions for use in self-targeting platforms are usually hydrophilic and have a negative charge under physiological conditions (pH 7.4) providing low adsorption of proteins and assisting blood circulation. However, near or in the acidic environment of a biofilm, they become positively-charged yielding targeting, penetration and accumulation in the biofilm through electrostatic double-layer attraction to negatively-charged bacteria. Response-times to pH changes vary, depending on the way the zwitterion or electrolyte is built in a platform. Self-targeting zwitterion-based platforms with a short response-time in vitro yield different accumulation kinetics in abdominal biofilms in living mice than platforms with a longer response-time. In vivo experiments in mice also proved that self-targeting, pH-responsive zwitterion-based platforms provide a feasible approach for clinical control of bacterial infections. Clinically however, also other conditions than infection may yield an acidic environment. Therefore, it remains to be seen whether pH is a sufficiently unique recognition sign to direct self-targeting platforms to an infectious biofilm or whether (additional) external targeting through e.g. near-infrared irradiation or magnetic field application is needed.


Assuntos
Anti-Infecciosos , Biofilmes , Animais , Antibacterianos/farmacologia , Antibacterianos/uso terapêutico , Anti-Infecciosos/farmacologia , Interações Hidrofóbicas e Hidrofílicas , Raios Infravermelhos , Camundongos
16.
Chemistry ; 28(4): e202103114, 2022 Jan 19.
Artigo em Inglês | MEDLINE | ID: mdl-34820923

RESUMO

We designed, synthesized, and characterized a tri-block copolymer. Its hydrophobic part, a chain of histone deacetylase inhibitor (HDACi) prodrug, was symmetrically flanked by two identical PEG blocks, whereas the built-in HDACi was a linear molecule, terminated with a thiol at one end, and a hydroxyl group at the other. Such a feature facilitated end-to-end linkage of prodrugs through alternatively aligned disulfides and carbonates. The disulfides served dual roles: redox sensors of smart nanomedicine, and warheads of masked HDACi drugs. This approach, carefully designed to benefit both control-release and efficacy, is conceptually novel for optimizing drug units in nanomedicine. Micelles from this designer polyprodrug released only PEG, CO2 and HDACi, and synergized with DOX against HCT116 cells, demonstrating its widespread potential in combination therapy. Our work highlights, for the first time, the unique advantage of thiol-based drug molecules in nanomedicine design.


Assuntos
Inibidores de Histona Desacetilases , Pró-Fármacos , Doxorrubicina , Micelas , Polietilenoglicóis
17.
Biomacromolecules ; 22(12): 5108-5117, 2021 12 13.
Artigo em Inglês | MEDLINE | ID: mdl-34756016

RESUMO

Development of nanomedicines for effective therapy of acute lung injury (ALI), a common critical respiratory failure syndrome, remains to be challenging. We report here a unique design of a functional nanoplatform based on generation 5 (G5) poly(amidoamine) dendrimer-entrapped gold nanoparticles (Au DENPs) to co-deliver dexamethasone (Dex) and a microRNA-155 inhibitor (miR-155i) for combination chemotherapy and gene therapy of ALI. In this study, we synthesized Au DENPs with 10 Dex moieties attached per G5 dendrimer and an Au core diameter of 2.1 nm and used them to compress miR-155i. The generated polyplexes own a positive zeta potential (16-26 mV) and a small hydrodynamic diameter (175-230 nm) and display desired cytocompatibility and efficient miR-155i delivery to lipopolysaccharide (LPS)-activated alveolar macrophages, thus upregulating the suppressor of cytokine signaling 1 and IL-10 expression and downregulating the pro-inflammatory cytokines (TNF-α, IL-1ß, and IL-6). Likewise, as a synthetic glucocorticoid with a potent anti-inflammatory property, the attached Dex on the surface of Au DENPs could inhibit pro-inflammatory cytokine secretion by down-regulating cyclooxygenase-2 expression in the LPS-activated alveolar macrophages. The integration of Dex and miR-155i within one nanoformulation enables superior downregulation of pro-inflammatory cytokines for successful repair of damaged lung tissues in an ALI model, as demonstrated by histological examinations and pro-inflammatory cytokine downregulation in ALI lesion at the gene and protein levels. Such a combined chemotherapy and gene therapy strategy enabled by dendrimer nanotechnology may hold great promise to treat other types of inflammatory diseases.


Assuntos
Lesão Pulmonar Aguda , Dendrímeros , Nanopartículas Metálicas , MicroRNAs , Lesão Pulmonar Aguda/tratamento farmacológico , Lesão Pulmonar Aguda/genética , Dexametasona/farmacologia , Ouro , Humanos , Lipopolissacarídeos , MicroRNAs/antagonistas & inibidores , MicroRNAs/farmacologia
18.
J Mater Chem B ; 9(31): 6149-6154, 2021 08 21.
Artigo em Inglês | MEDLINE | ID: mdl-34328166

RESUMO

We report the construction of two types of core-shell tecto dendrimers (CSTDs) with different core rigidities to illustrate the impact of molecular rigidity on their gene delivery efficiency. Our study reveals that CSTDs designed with rigid cores enable promoted gene delivery, providing many possibilities for a wide range of gene delivery-associated biomedical applications.


Assuntos
Dendrímeros/química , Técnicas de Transferência de Genes , Terapia Genética , Poliaminas/química , Células HeLa , Humanos , Teste de Materiais
19.
Nat Commun ; 12(1): 3187, 2021 05 27.
Artigo em Inglês | MEDLINE | ID: mdl-34045459

RESUMO

Failure of conventional clinical therapies such as tumor resection and chemotherapy are mainly due to the ineffective control of tumor metastasis. Metastasis consists of three steps: (i) tumor cells extravasate from the primary sites into the circulation system via epithelial-mesenchymal transition (EMT), (ii) the circulating tumor cells (CTCs) form "micro-thrombi" with platelets to evade the immune surveillance in circulation, and (iii) the CTCs colonize in the pre-metastatic niche. Here, we design a systemic metastasis-targeted nanotherapeutic (H@CaPP) composed of an anti-inflammatory agent, piceatannol, and an anti-thrombotic agent, low molecular weight heparin, to hinder the multiple steps of tumor metastasis. H@CaPP is found efficiently impeded EMT, inhibited the formation of "micro-thrombi", and prevented the development of pre-metastatic niche. When combined with surgical resection or chemotherapy, H@CaPP efficiently inhibits tumor metastasis and prolonged overall survival of tumor-bearing mice. Collectively, we provide a simple and effective systemic metastasis-targeted nanotherapeutic for combating tumor metastasis.


Assuntos
Protocolos de Quimioterapia Combinada Antineoplásica/administração & dosagem , Portadores de Fármacos/química , Neoplasias Mamárias Experimentais/terapia , Metástase Neoplásica/terapia , Nanomedicina Teranóstica/métodos , Animais , Anti-Inflamatórios/administração & dosagem , Anticoagulantes/administração & dosagem , Linhagem Celular Tumoral/transplante , Quimioterapia Adjuvante/métodos , Modelos Animais de Doenças , Transição Epitelial-Mesenquimal/efeitos dos fármacos , Feminino , Heparina de Baixo Peso Molecular/administração & dosagem , Células Endoteliais da Veia Umbilical Humana , Humanos , Masculino , Glândulas Mamárias Animais/patologia , Glândulas Mamárias Animais/cirurgia , Neoplasias Mamárias Experimentais/patologia , Camundongos , Nanopartículas/química , Células Neoplásicas Circulantes/efeitos dos fármacos , Paclitaxel/administração & dosagem , Estudo de Prova de Conceito , Ratos , Estilbenos/administração & dosagem
20.
Angew Chem Int Ed Engl ; 60(32): 17714-17719, 2021 08 02.
Artigo em Inglês | MEDLINE | ID: mdl-34028150

RESUMO

A lipid named DCPA was synthesized under microwave-assisted heating. DCPA possesses a pyridine betaine, hydrophilic group that can be complexed with water through hydrogen bonding (DCPA-H2 O). DCPA-H2 O liposomes became protonated relatively fast already at pH<6.8, due to the high HOMO binding energy of DCPA-H2 O. In murine models, DCPA-H2 O liposomes had longer blood circulation times than natural DPPC or cationic DCPM liposomes, while after tail-vein injection DCPA-H2 O liposomes targeted faster to solid tumors and intra-abdominal infectious biofilms. Therapeutic efficacy in a murine, infected wound-healing model of tail-vein injected ciprofloxacin-loaded DCPA-H2 O liposomes exceeded the ones of clinically applied ciprofloxacin as well as of ciprofloxacin-loaded DPPC or DCPM liposomes.


Assuntos
Portadores de Fármacos/farmacocinética , Lipossomos/farmacocinética , Neoplasias/diagnóstico por imagem , Infecções Estafilocócicas/diagnóstico por imagem , Água/química , Acetatos/síntese química , Acetatos/farmacocinética , Animais , Antibacterianos/uso terapêutico , Biofilmes , Ciprofloxacina/uso terapêutico , Portadores de Fármacos/síntese química , Feminino , Corantes Fluorescentes/química , Células Hep G2 , Humanos , Concentração de Íons de Hidrogênio , Lipossomos/química , Masculino , Camundongos Endogâmicos BALB C , Mycobacterium tuberculosis/fisiologia , Compostos de Piridínio/síntese química , Compostos de Piridínio/farmacocinética , Ratos Sprague-Dawley , Rodaminas/química , Infecções Estafilocócicas/tratamento farmacológico , Infecções Estafilocócicas/fisiopatologia , Staphylococcus aureus/efeitos dos fármacos , Staphylococcus aureus/fisiologia , Tuberculose/diagnóstico por imagem , Tuberculose/fisiopatologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...