Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Bioorg Chem ; 119: 105469, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34915285

RESUMO

Targeting EGFR and HER-2 is an essential direction for cancer treatment. Here, a series of N-(1,3,4-thiadiazol-2-yl)benzamide derivatives containing a 6,7-methoxyquinoline structure was designed and synthesized to serve as EGFR/HER-2 dual-target inhibitors. The kinase assays verified that target compounds could inhibit the kinase activity of EGFR and HER-2 selectively. The results of CCK-8 and 3D cell viability assays confirmed that target compounds had excellent anti-proliferation ability against breast cancer cells (MCF-7 and SK-BR-3) and lung cancer cells (A549 and H1975), particularly against SK-BR-3 cells, while the inhibitory effect on healthy breast cells (MCF-10A) and lung cells (Beas-2B) was weak. Among them, the hit compound YH-9 binded to EGFR and HER-2 stably in molecular dynamics studies. Further studies found thatYH-9could induce the release of cytochrome c and inhibit proliferation by promoting ROS expression in SK-BR-3 cells. Moreover,YH-9could diminish the secretion of VEGF and bFGF factors in SK-BR-3 cells, then inhibited tube formation and angiogenesis. Notably,YH-9could effectively inhibit breast cancer growth and angiogenesis with little toxicity in the SK-BR-3 cell xenograft model. Taken together,in vitroandin vivoresults revealed that YH-9 had high drug potential as a dual-target inhibitor of EGFR/HER-2 to inhibit breast cancer growth and angiogenesis.


Assuntos
Antineoplásicos/farmacologia , Benzamidas/farmacologia , Descoberta de Drogas , Neovascularização Patológica/tratamento farmacológico , Inibidores de Proteínas Quinases/farmacologia , Tiadiazóis/farmacologia , Antineoplásicos/síntese química , Antineoplásicos/química , Benzamidas/síntese química , Benzamidas/química , Proliferação de Células/efeitos dos fármacos , Relação Dose-Resposta a Droga , Ensaios de Seleção de Medicamentos Antitumorais , Receptores ErbB/antagonistas & inibidores , Receptores ErbB/metabolismo , Humanos , Estrutura Molecular , Neovascularização Patológica/patologia , Inibidores de Proteínas Quinases/síntese química , Inibidores de Proteínas Quinases/química , Receptor ErbB-2/antagonistas & inibidores , Receptor ErbB-2/metabolismo , Relação Estrutura-Atividade , Tiadiazóis/síntese química , Tiadiazóis/química , Células Tumorais Cultivadas
2.
J Med Chem ; 64(18): 13356-13372, 2021 09 23.
Artigo em Inglês | MEDLINE | ID: mdl-34473510

RESUMO

Based on the novel allosteric site of deoxyhypusine synthase (DHPS), two series of 30 novel 5-(2-methoxyphenoxy)-2-phenylpyrimidin-4-amine derivatives as DHPS inhibitors were designed and synthesized. Among them, compound 8m, with the best DHPS inhibitory potency (IC50 = 0.014 µM), exhibited excellent inhibition against melanoma cells, which was superior to that of GC7. Besides, molecular docking and molecular dynamics (MD) simulations further proved that compound 8m was tightly bound to the allosteric site of DHPS. Flow cytometric analysis and enzyme-linked immunosorbent assay (ELISA) showed that compound 8m could inhibit the intracellular reactive oxygen species (ROS) level. Furthermore, by western blot analysis, compound 8m effectively activated caspase 3 and decreased the expressions of GP-100, tyrosinase, eIF5A2, MMP2, and MMP9. Moreover, both Transwell analysis and wound healing analysis showed that compound 8m could inhibit the invasion and migration of melanoma cells. In the in vivo study, the tumor xenograft model showed that compound 8m effectively inhibited melanoma development with low toxicity.


Assuntos
Antineoplásicos/uso terapêutico , Inibidores Enzimáticos/uso terapêutico , Melanoma/tratamento farmacológico , Oxirredutases atuantes sobre Doadores de Grupo CH-NH/antagonistas & inibidores , Pirimidinas/uso terapêutico , Sítio Alostérico , Animais , Antineoplásicos/síntese química , Antineoplásicos/metabolismo , Antineoplásicos/farmacocinética , Linhagem Celular Tumoral , Movimento Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Desenho de Fármacos , Inibidores Enzimáticos/síntese química , Inibidores Enzimáticos/metabolismo , Inibidores Enzimáticos/farmacocinética , Feminino , Humanos , Masculino , Camundongos Endogâmicos BALB C , Camundongos Nus , Simulação de Acoplamento Molecular , Simulação de Dinâmica Molecular , Estrutura Molecular , Oxirredutases atuantes sobre Doadores de Grupo CH-NH/química , Oxirredutases atuantes sobre Doadores de Grupo CH-NH/metabolismo , Ligação Proteica , Pirimidinas/síntese química , Pirimidinas/metabolismo , Pirimidinas/farmacocinética , Ratos Sprague-Dawley , Relação Estrutura-Atividade , Ensaios Antitumorais Modelo de Xenoenxerto
3.
Bioorg Chem ; 111: 104840, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33780687

RESUMO

To further explore the research of novel PARP-1 inhibitors, we designed and synthesized a series of novel amide PARP-1 inhibitors based on our previous research. Most compounds displayed certain antitumor activities against four tumor cell lines (A549, HepG2, HCT-116, and MCF-7). Specifically, the candidate compound R8e possessed strong anti-proliferative potency toward A549 cells with the IC50 value of 2.01 µM. Compound R8e had low toxicity to lung cancer cell line. And the in vitro enzyme inhibitory activity of compound R8e was better than rucaparib. Molecular docking studies provided a rational binding model of compound R8e in complex with rucaparib. The following cell cycle and apoptosis assays revealed that compound R8e could arrest cell cycle in the S phase and induce cell apoptosis. Western blot analysis further showed that compound R8e could effectively inhibit the PAR's biosynthesis and was more effective than rucaparib. Overall, based on the biological activity evaluation, compound R8e could be a potential lead compound for further developing novel amide PARP-1 inhibitors.


Assuntos
Antineoplásicos/farmacologia , Azepinas/farmacologia , Cicloexanonas/farmacologia , Desenho de Fármacos , Poli(ADP-Ribose) Polimerase-1/antagonistas & inibidores , Inibidores de Poli(ADP-Ribose) Polimerases/farmacologia , Compostos de Espiro/farmacologia , Antineoplásicos/síntese química , Antineoplásicos/química , Apoptose/efeitos dos fármacos , Azepinas/síntese química , Azepinas/química , Ciclo Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Cicloexanonas/síntese química , Cicloexanonas/química , Relação Dose-Resposta a Droga , Ensaios de Seleção de Medicamentos Antitumorais , Humanos , Estrutura Molecular , Poli(ADP-Ribose) Polimerase-1/metabolismo , Inibidores de Poli(ADP-Ribose) Polimerases/síntese química , Inibidores de Poli(ADP-Ribose) Polimerases/química , Compostos de Espiro/síntese química , Compostos de Espiro/química , Relação Estrutura-Atividade , Células Tumorais Cultivadas
4.
Eur J Med Chem ; 211: 113083, 2021 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-33340911

RESUMO

In the past five years, our team had been committed to click chemistry research, exploring the biological activity of 1,2,3-triazole by synthesizing different target inhibitors. In this study, a series of novel indole-2-one derivatives based on 1,2,3-triazole scaffolds were synthesized for the first time, and their inhibitory activity on vascular endothelial growth factor receptor-2 (VEGFR-2) was tested. Most of the compounds had shown promising activity in the VEGFR-2 kinase assay and had low toxicity to human umbilical vein endothelial cells (HUVECs). The compound 13d (IC50 = 26.38 nM) had better kinase activity inhibition ability than sunitinib (IC50 = 83.20 nM) and was less toxic to HUVECs. Moreover, it had an excellent inhibitory effect on HT-29 and MKN-45 cells. On the one hand, by tube formation assay, transwell, and Western blot analysis, compound 13d could inhibit VEGFR-2 protein phosphorylate on HUVECs, thereby inhibiting HUVECs migration and tube formation. In vivo study, the zebrafish model with VEGFR-2 labeling also verified that compound 13d had more anti-angiogenesis ability than sunitinib. On the other hand, molecular docking and molecular dynamics (MD) simulation results showed that compound 13d could stably bind to the active site of VEGFR-2. Based on the above findings, compound 13d could be considered an effective anti-angiogenesis drug and has more development value than sunitinib.


Assuntos
Inibidores da Angiogênese/uso terapêutico , Triazóis/uso terapêutico , Receptor 2 de Fatores de Crescimento do Endotélio Vascular/antagonistas & inibidores , Inibidores da Angiogênese/farmacologia , Animais , Proliferação de Células , Desenho de Fármacos , Humanos , Estrutura Molecular , Triazóis/farmacologia , Peixe-Zebra
5.
J Adv Res ; 26: 95-110, 2020 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-33133686

RESUMO

INTRODUCTION: The development of a new type of Thymidylate synthase (TS) inhibitor that could inhibit cancer cells' proliferation and anti-angiogenesis is of great significance for cancer's clinical treatment. OBJECTIVES: Our research hopes to develop a TS inhibitor that is more effective than the current first-line clinical treatment of pemetrexed (PTX) and provide a new reference for the clinical treatment of non-small cell lung cancer (NSCLC). METHODS: We obtained a series of novel TS inhibitors by chemical synthesis. Moreover, TS assay and molecular docking to verify the target compound's inhibitory mode. Use MTT assay, colony-forming assay, flow cytometry, and western blot to verify the compound's inhibitory effect on cancer cell proliferation and its mechanism; and explore the compound's effect on angiogenesis in vitro and in vivo. Further, explore the hit compound's anti-cancer ability through the xenograft tumor model and the orthotopic cancer murine model. RESULTS: A series of N-(3-(5-phenyl-1,3,4-oxadiazole-2-yl) phenyl)-2,4-dihydroxypyrimidine-5-sulfamide derivatives were synthesized as TS inhibitors for the first time. All target compounds significantly inhibited hTS enzyme activity and demonstrated significant antitumor activity against five cancer cell lines. Notably, 7f had a high selectivity index (SI) and unique inhibitory effects on eight NSCLC cells. In-depth research indicated that 7f could induce apoptosis by the mitochondrial pathway in A549 and PC-9 cells through the upregulation of wild-type P53 protein expression. Additionally, 7f was shown to inhibit angiogenesis in vitro and in vivo. In vivo studies, compared to PTX, 7f significantly inhibited tumor growth in A549 cell xenografts and had a higher therapeutic index (TGI). Moreover, 7f could prolong the survival of the orthotopic lung cancer murine model more effectively than PTX. CONCLUSION: The anti-angiogenic effect of 7f provides a new reference for the development of TS inhibitors and the clinical treatment of NSCLC.

6.
Bioorg Chem ; 103: 104189, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32890996

RESUMO

A series of novel (E)-N-phenyl-4-(pyridine-acylhydrazone) benzamide derivatives were designed, synthesized, and evaluated for their anti-proliferative activity against two different human cancer cell lines and one human normal cell line. Compound 8b had the best anti-proliferative activity (IC50 = 0.12 ± 0.09 µM, RPMI8226 cells) than the other compounds. And compound 8b had lower toxicity than imatinib. Flow cytometry analysis showed that compound 8b could arrest the cell cycle at the G0/G1 phase, and induce apoptosis of RPMI8226 cells by promoting mitochondrial ROS release, thereby effectively inhibiting cell proliferation. Our findings provided a promising lead compound 8b for further structural optimization and will be instructive for the discovery of more potent antitumor drugs with high selectivity and low toxicity.


Assuntos
Antineoplásicos/farmacologia , Benzamidas/farmacologia , Hidrazonas/farmacologia , Mieloma Múltiplo/tratamento farmacológico , Antineoplásicos/síntese química , Apoptose/efeitos dos fármacos , Benzamidas/síntese química , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Desenho de Fármacos , Ensaios de Seleção de Medicamentos Antitumorais , Pontos de Checagem da Fase G1 do Ciclo Celular/efeitos dos fármacos , Humanos , Hidrazonas/síntese química , Estrutura Molecular , Espécies Reativas de Oxigênio/metabolismo , Relação Estrutura-Atividade
7.
Cell Death Dis ; 10(7): 532, 2019 07 11.
Artigo em Inglês | MEDLINE | ID: mdl-31296849

RESUMO

Thymidylate synthase (TS) is a hot target for tumor chemotherapy, and its inhibitors are an essential direction for anti-tumor drug research. To our knowledge, currently, there are no reported thymidylate synthase inhibitors that could inhibit cancer cell migration. Therefore, for optimal therapeutic purposes, combines our previous reports and findings, we hope to obtain a multi-effects inhibitor. This study according to the principle of flattening we designed and synthesized 18 of N-phenyl-(2,4-dihydroxypyrimidine-5-sulfonamido)phenyl urea derivatives as multi-effects inhibitors. The biological evaluation results showed that target compounds could significantly inhibit the hTS enzyme, BRaf kinase and EGFR kinase activity in vitro, and most of the compounds had excellent anti-cell viability for six cancer cell lines. Notably, the candidate compound L14e (IC50 = 0.67 µM) had the superior anti-cell viability and safety to A549 and H460 cells compared with pemetrexed. Further studies had shown that L14e could cause G1/S phase arrest then induce intrinsic apoptosis. Transwell, western blot, and tube formation results proved that L14e could inhibit the activation of the EGFR signaling pathway, then ultimately achieve the purpose of inhibiting cancer cell migration and angiogenesis in cancer tissues. Furthermore, in vivo pharmacology evaluations of L14e showed significant antitumor activity in A549 cells xenografts with minimal toxicity. All of these results demonstrated that the L14e has the potential for drug discovery as a multi-effects inhibitor and provides a new reference for clinical treatment of non-small cell lung cancer.


Assuntos
Antineoplásicos/farmacologia , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Inibidores Enzimáticos/farmacologia , Neoplasias Pulmonares/tratamento farmacológico , Pirimidinas/química , Timidilato Sintase/antagonistas & inibidores , Ureia/farmacologia , Animais , Antineoplásicos/síntese química , Antineoplásicos/química , Apoptose/efeitos dos fármacos , Carcinoma Pulmonar de Células não Pequenas/patologia , Linhagem Celular Tumoral , Movimento Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Ensaios de Seleção de Medicamentos Antitumorais , Inibidores Enzimáticos/síntese química , Inibidores Enzimáticos/química , Receptores ErbB/antagonistas & inibidores , Feminino , Humanos , Neoplasias Pulmonares/patologia , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Nus , Simulação de Acoplamento Molecular , Terapia de Alvo Molecular , Neovascularização Patológica/tratamento farmacológico , Proteínas Proto-Oncogênicas B-raf/antagonistas & inibidores , Pirimidinas/farmacologia , Timidilato Sintase/genética , Timidilato Sintase/metabolismo , Transplante Heterólogo , Ureia/análogos & derivados , Ureia/síntese química , Ureia/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...