Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Science ; 366(6461): 105-109, 2019 10 04.
Artigo em Inglês | MEDLINE | ID: mdl-31604310

RESUMO

High-throughput fabrication techniques for generating arbitrarily complex three-dimensional structures with nanoscale features are desirable across a broad range of applications. Two-photon lithography (TPL)-based submicrometer additive manufacturing is a promising candidate to fill this gap. However, the serial point-by-point writing scheme of TPL is too slow for many applications. Attempts at parallelization either do not have submicrometer resolution or cannot pattern complex structures. We overcome these difficulties by spatially and temporally focusing an ultrafast laser to implement a projection-based layer-by-layer parallelization. This increases the throughput up to three orders of magnitude and expands the geometric design space. We demonstrate this by printing, within single-digit millisecond time scales, nanowires with widths smaller than 175 nanometers over an area one million times larger than the cross-sectional area.

2.
Nat Commun ; 10(1): 2179, 2019 05 16.
Artigo em Inglês | MEDLINE | ID: mdl-31097713

RESUMO

Two-photon polymerization (TPP) is the most precise 3-D printing process that has been used to create many complex structures for advanced photonic and nanoscale applications. However, to date the technology still remains a laboratory tool due to its high operation cost and limited fabrication rate, i.e., serial laser scanning process. Here we present a revolutionary laser nanofabrication process based on TPP and an ultrafast random-access digital micromirror device (DMD) scanner. By exploiting binary holography, the DMD scanner can simultaneously generate and individually control one to tens of laser foci for parallel nanofabrication at 22.7 kHz. Complex 3-D trusses and woodpile structures have been fabricated via single or multi-focus processes, showing a resolution of ~500 nm. The nanofabrication system may be used for largescale nano-prototyping or creation of complex structures, e.g., overhanging structures, that cannot be easily fabricated via conventional raster-scanning-based systems, bringing significant impact to the world of nanomanufacturing.

3.
Opt Lett ; 41(7): 1451-4, 2016 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-27192259

RESUMO

In this Letter, we present an ultrafast nonmechanical axial scanning method for two-photon excitation (TPE) microscopy based on binary holography using a digital micromirror device (DMD), achieving a scanning rate of 4.2 kHz, scanning range of ∼180 µm, and scanning resolution (minimum step size) of ∼270 nm. Axial scanning is achieved by projecting the femtosecond laser to a DMD programmed with binary holograms of spherical wavefronts of increasing/decreasing radii. To guide the scanner design, we have derived the parametric relationships between the DMD parameters (i.e., aperture and pixel size), and the axial scanning characteristics, including (1) maximum optical power, (2) minimum step size, and (3) scan range. To verify the results, the DMD scanner is integrated with a custom-built TPE microscope that operates at 60 frames per second. In the experiment, we scanned a pollen sample via both the DMD scanner and a precision z-stage. The results show the DMD scanner generates images of equal quality throughout the scanning range. The overall efficiency of the TPE system was measured to be ∼3%. With the high scanning rate, the DMD scanner may find important applications in random-access imaging or high-speed volumetric imaging that enables visualization of highly dynamic biological processes in 3D with submillisecond temporal resolution.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...