Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 56
Filtrar
1.
Apoptosis ; 2024 Apr 18.
Artigo em Inglês | MEDLINE | ID: mdl-38635022

RESUMO

Hypoxic pulmonary hypertension (HPH) is a pathophysiological syndrome in which pulmonary vascular pressure increases under hypoxic stimulation and there is an urgent need to develop emerging therapies for the treatment of HPH. LncRNA MIR210HG is a long non-coding RNA closely related to hypoxia and has been widely reported in a variety of tumor diseases. But its mechanism in hypoxic pulmonary hypertension is not clear. In this study, we identified for the first time the potential effect of MIR210HG on disease progression in HPH. Furthermore, we investigated the underlying mechanism through which elevated levels of MIR210HG promotes the transition from a contractile phenotype to a synthetic phenotype in PASMCs under hypoxia via activation of autophagy-dependent ferroptosis pathway. While overexpression of HIF-2α in PASMCs under hypoxia significantly reversed the phenotypic changes induced by MIR210HG knockdown. We further investigated the potential positive regulatory relationship between STAT3 and the transcription of MIR210HG in PASMCs under hypoxic conditions. In addition, we established both in vivo and in vitro models of HPH to validate the differential expression of specific markers associated with hypoxia. Our findings suggest a potential mechanism of LncRNA MIR210HG in the progression of HPH and offer potential targets for disease intervention and treatment.

2.
Rice (N Y) ; 17(1): 18, 2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38429614

RESUMO

Sulfur (S) is one of the main components of important biomolecules, which has been paid more attention in the anaerobic environment of rice cultivation. In this study, 12 accessions of rice materials, belonging to two Asian rice domestication systems and one African rice domestication system, were used by shotgun metagenomics sequencing to compare the structure and function involved in S cycle of rhizosphere microbiome between wild and cultivated rice. The sulfur cycle functional genes abundances were significantly different between wild and cultivated rice rhizosphere in the processes of sulfate reduction and other sulfur compounds conversion, implicating that wild rice had a stronger mutually-beneficial relationship with rhizosphere microbiome, enhancing sulfur utilization. To assess the effects of sulfate reduction synthetic microbiomes, Comamonadaceae and Rhodospirillaceae, two families containing the genes of two key steps in the dissimilatory sulfate reduction, aprA and dsrA respectively, were isolated from wild rice rhizosphere. Compared with the control group, the dissimilatory sulfate reduction in cultivated rice rhizosphere was significantly improved in the inoculated with different proportions groups. It confirmed that the synthetic microbiome can promote the S-cycling in rice, and suggested that may be feasible to construct the synthetic microbiome step by step based on functional genes to achieve the target functional pathway. In summary, this study reveals the response of rice rhizosphere microbial community structure and function to domestication, and provides a new idea for the construction of synthetic microbiome.

3.
Microorganisms ; 12(2)2024 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-38399698

RESUMO

Soil amendments may enhance crop yield and quality by increasing soil nutrient levels and improving nutrient absorption efficiency, potentially through beneficial microbial interactions. In this work, the effects of amending soil with straw-based carbon substrate (SCS), a novel biochar material, on soil nutrients, soil microbial communities, and maize yield were compared with those of soil amendment with conventional straw. The diversity and abundance of soil bacterial and fungal communities were significantly influenced by both the maize growth period and the treatment used. Regression analysis of microbial community variation indicated that Rhizobiales, Saccharimonadales, and Eurotiales were the bacterial and fungal taxa that exhibited a positive response to SCS amendment during the growth stages of maize. Members of these taxa break down organic matter to release nutrients that promote plant growth and yield. In the seedling and vegetative stages of maize growth, the abundance of Rhizobiales is positively correlated with the total nitrogen (TN) content in the soil. During the tasseling and physiological maturity stages of corn, the abundance of Saccharimonadales and Eurotiales is positively correlated with the content of total carbon (TC), total phosphorus (TP), and available phosphorus (AP) in the soil. The results suggest that specific beneficial microorganisms are recruited at different stages of maize growth to supply the nutrients required at each stage. This targeted recruitment strategy optimizes the availability of nutrients to plants and ultimately leads to higher yields. The identification of these key beneficial microorganisms may provide a theoretical basis for the targeted improvement of crop yield and soil quality. This study demonstrates that SCS amendment enhances soil nutrient content and crop yield compared with conventional straw incorporation and sheds light on the response of soil microorganisms to SCS amendment, providing valuable insights for the future implementation of this material.

4.
Animals (Basel) ; 13(23)2023 Nov 23.
Artigo em Inglês | MEDLINE | ID: mdl-38066969

RESUMO

Skeletal muscle satellite cells have the ability to differentiate into various cells under different conditions. This study aimed to investigate the effects of different concentrations of oleic acid (50, 100, and 200 µmol/L) on the process of lipogenic transdifferentiation in Yanbian bovine satellite cells, as well as its molecular regulatory mechanism. After inducing differentiation with oleic acid for 96 h, it was observed that the addition of oleic acid resulted in the formation of lipid droplets in the bovine satellite cells, and the triglyceride content showed a dose-dependent relationship with the concentration of OA. qPCR results demonstrated a significant downregulation of myogenesis-related factors (Pax3 and MyoD) and upregulation of lipogenesis-related factors (C/EBP-ß and PPARγ) (p < 0.05). Fatty acid metabolism-related factors, SCD and PLIN2, were also significantly upregulated (p < 0.05). These finding were consistent with the results obtained from Western blotting. Transcriptome sequencing analysis identified 278 differentially expressed genes between the control group and the groups treated with OA. KEGG enrichment analysis showed that differentially expressed genes were mainly concentrated in the adenosine monophosphate-activated protein kinase signaling pathway and fatty acid metabolic pathway. Our study presents that the OA induction of Yanbian bovine skeletal muscle satellite cells can promote cellular lipid transdifferentiation and reveals the potential genes and pathways related to OA induction of these satellite cells.

5.
Food Res Int ; 173(Pt 2): 113419, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37803757

RESUMO

Rapid sensory profiling methods relying on consumers' perceptions are getting prevalent and broadly utilized by labs and companies to supersede conventional sensory profiling methodologies. Till now, various intensity-based sensory methods such as the newly proposed Pivot-Check-All-That-Apply (CATA) are limitedly developed and compared. In this investigation, Pivot Profile (PP), Rate-All-That-Apply (RATA), and Pivot-CATA methods were applied and validated using tea consumers and commercial Chinese tea products as samples. Data from three approaches were collected, analyzed by correspondence analysis (CA), and used to compare the three methods assessing the panel assessment process, sensory maps, confidence ellipses, and practical applications. Pivot-CATA exhibited a high similarity with RATA (RV = 0.873), and a lower similarity with PP (RV = 0.629). Of the three intensity-related methods, confidence ellipses on the RATA sensory map were the smallest and overlapped the least. However, Pivot-CATA consumed less time in collecting data and its questionnaire was more friendly to participants compared with PP and made the difference in intensity of samples more noticeable to the participants than RATA due to the existence of the pivot sample. Its experimental versatility also allows for a wide range of applications, indicating that the Pivot-CATA is an approach with great promise for routine use.


Assuntos
Processos Mentais , Paladar , Humanos , Inquéritos e Questionários , Comportamento do Consumidor , Chá
6.
Nat Commun ; 14(1): 4324, 2023 Jul 19.
Artigo em Inglês | MEDLINE | ID: mdl-37468474

RESUMO

Solitary waves are unique in nonlinear systems, but their formation and propagation in the nonlinear fluid-structure interactions have yet to be further explored. As a typical nonlinear system, the buckling of solid thin films is fundamentally related to the film-substrate interface that is further vulnerable to environments, especially when fluids exist. In this work, we report an anomalous, solitary-wave-like blister (SWLB) mode of MoS2 thin films in a humid environment. Unlike the most common telephone-cord and web buckling deformation, the SWLB propagates forward like solitary waves that usually appear in fluids and exhibits three-dimensional expansions of the profiles during propagation. In situ mechanical, optical, and topology measurements verify the existence of an interfacial water nanolayer, which facilitates a delamination of films at the front side of the SWLB and a readhesion at the tail side owing to the water nanolayer-induced fluid-structure interaction. Furthermore, the expansion morphologies and process of the SWLB are predicted by our theoretical model based on the energy change of buckle propagation. Our work not only demonstrates the emerging SWLB mode in a solid material but also sheds light on the significance of interfacial water nanolayers to structural deformation and functional applications of thin films.

7.
Cell Death Discov ; 9(1): 239, 2023 Jul 12.
Artigo em Inglês | MEDLINE | ID: mdl-37438344

RESUMO

Pulmonary hypertension (PH) is a clinical and pathophysiological syndrome caused by changes in pulmonary vascular structure or function that results in increased pulmonary vascular resistance and pulmonary arterial pressure, and it is characterized by pulmonary endothelial dysfunction, pulmonary artery media thickening, pulmonary vascular remodeling, and right ventricular hypertrophy, all of which are driven by an imbalance between the growth and death of pulmonary vascular cells. Programmed cell death (PCD), different from cell necrosis, is an active cellular death mechanism that is activated in response to both internal and external factors and is precisely regulated by cells. More than a dozen PCD modes have been identified, among which apoptosis, autophagy, pyroptosis, ferroptosis, necroptosis, and cuproptosis have been proven to be involved in the pathophysiology of PH to varying degrees. This article provides a summary of the regulatory patterns of different PCD modes and their potential effects on PH. Additionally, it describes the current understanding of this complex and interconnected process and analyzes the therapeutic potential of targeting specific PCD modes as molecular targets.

8.
ACS Appl Mater Interfaces ; 15(29): 34451-34461, 2023 Jul 26.
Artigo em Inglês | MEDLINE | ID: mdl-37458210

RESUMO

Constant oxidative stress at the wound site prolongs the inflammation period and slows down the proliferation stage. In order to shorten the inflammatory period meanwhile promote the proliferative activity of fibroblasts, herein, we synthesized novel camelina-derived carbon dots (CDs) decorating on hFGF2-linked camelina lipid droplets (CLD-hFGF2) to form nanobiomaterial CDs-CLD-hFGF2. The CDs-CLD-hFGF2 possesses peroxidase activity and has effective reactive oxygen species radical scavenging activity while achieving proliferation of NIH/3T3 cells under oxidative stress in vitro. In the acute wound model, wound healing after CDs-CLD-hFGF2 treatment reached nearly 92% on the 10th day, compared with 82% for CLD-hFGF2. Moreover, the wound site showed significant anti-inflammatory effects characterized by the downregulation of pro-inflammatory factors and the upregulation of anti-inflammatory factor levels. Overall, this study provided a strategy for the comprehensive utilization of camelina oil crops and revealed a promising future that could be considered an effective method for wound healing on the skin.


Assuntos
Carbono , Gotículas Lipídicas , Camundongos , Animais , Carbono/farmacologia , Cicatrização , Pele , Antioxidantes
9.
Bioresour Technol ; 381: 129132, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37149269

RESUMO

To excavate a complex co-degradation system for decomposing cellulose more efficiently, cellulose-degrading bacteria, including Bacillus subtilis WF-8, Bacillus licheniformis WF-11, Bacillus Cereus WS-1 and Streptomyces Nogalater WF-10 were added during maize straw and cattle manure aerobic composting. Bacillus and Streptomyces successfully colonized, which improve cellulose degrading ability. Continuous colonization of cellulose-degrading bacteria can promote the fungi to produce more precursors for humus and promote the negative correlation with Ascomycota. In the current study, the addition of cellulose-degrading bacteria has resulted in the rapid development of Mycothermus and Remersonia in the phylum Ascomycota as keystone fungal genera which constitute the foundation of the co-degradation system. Network analysis reveals the complex co-degradation system of efficient cellulose bacteria and mature fungi to treat cellulose in the process of straw aerobic composting mainly related to the influence of total carbon (TC) /total nitrogen (TN) and humic acid (HA)/fulvic acid (FA). This research offers a complex co-degradation system more efficiently to decompose cellulose aiming to maintain the long-term sustainability of agriculture.


Assuntos
Celulose , Compostagem , Animais , Bovinos , Celulose/metabolismo , Agricultura , Solo , Bacillus subtilis/metabolismo , Esterco/microbiologia
10.
Food Chem ; 419: 136076, 2023 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-37004366

RESUMO

Fucoxanthin (FX) extracted from Undaria pinnatifida by an ultrasonic-assisted extraction (UAE) procedure was successfully added to the fermented yogurt through a stably nanoencapsulation. The physicochemical characteristics, texture analysis, rheological testing, sensory evaluation, simulated digestion analysis, and 16SrDNA sequencing analysis were used to evaluate the effect of encapsulated-FX on the function, structure and stability of the fermented yogurt during 7 days cold storage. Encapsulated-FX with a highly water dispersion, changed the microstructure of yogurt, making it more uniform and denser, enhanced the antioxidant activity, increased the stability of milk protein in simulated gastric environment in vitro and promoted the absorption of protein small molecule fragments in the intestine, and inhibited the growth of harmful bacteria during cold storage. This study provided a simple strategy for the production of FX-fortified yogurt by using an effective nanoencapsulation technology, and promoted the extraction and application of active ingredients of edible brown algae.


Assuntos
Xantofilas , Iogurte , Fenômenos Químicos , Proteínas do Leite/análise , Xantofilas/análise , Iogurte/análise , Temperatura Baixa
11.
Small ; 19(23): e2300766, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-36866500

RESUMO

Scaling up the chemical vapor deposition (CVD) of monolayer transition metal dichalcogenides (TMDCs) is in high demand for practical applications. However, for CVD-grown TMDCs on a large scale, there are many existing factors that result in their poor uniformity. In particular, gas flow, which usually leads to inhomogeneous distributions of precursor concentrations, has yet to be well controlled. In this work, the growth of uniform monolayer MoS2 on a large scale by the delicate control of gas flows of precursors, which is realized by vertically aligning a well-designed perforated carbon nanotube (p-CNT) film face-to-face with the substrate in a horizontal tube furnace, is achieved. The p-CNT film releases gaseous Mo precursor from the solid part and allows S vapor to pass through the hollow part, resulting in uniform distributions of both gas flow rate and precursor concentrations near the substrate. Simulation results further verify that the well-designed p-CNT film guarantees a steady gas flow and a uniform spatial distribution of precursors. Consequently, the as-grown monolayer MoS2 shows quite good uniformity in geometry, density, structure, and electrical properties. This work provides a universal pathway for the synthesis of large-scale uniform monolayer TMDCs, and will advance their applications in high-performance electronic devices.

12.
Angew Chem Int Ed Engl ; 62(16): e202301421, 2023 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-36808416

RESUMO

The study of VO2 flourishes due to its rich competing phases induced by slight stoichiometry variations. However, the vague mechanism of stoichiometry manipulation makes the precise phase engineering of VO2 still challenging. Here, stoichiometry manipulation of single-crystal VO2 beams in liquid-assisted growth is systematically studied. Contrary to previous experience, oxygen-rich VO2 phases are abnormally synthesized under a reduced oxygen concentration, revealing the important function of liquid V2 O5 precursor: It submerges VO2 crystals and stabilizes their stoichiometric phase (M1) by isolating them from the reactive atmosphere, while the uncovered crystals are oxidized by the growth atmosphere. By varying the thickness of liquid V2 O5 precursor and thus the exposure time of VO2 to the atmosphere, various VO2 phases (M1, T, and M2) can be selectively stabilized. Furthermore, this liquid precursor-guided growth can be used to spatially manages multiphase structures in single VO2 beams, enriching their deformation modes for actuation applications.

13.
Adv Mater ; 35(18): e2210735, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-36652589

RESUMO

Nanoscale electronic devices that can work in harsh environments are in high demand for wearable, automotive, and aerospace electronics. Clean and defect-free interfaces are of vital importance for building nanoscale harsh-environment-resistant devices. However, current nanoscale devices are subject to failure in these environments, especially at defective electrode-channel interfaces. Here, harsh-environment-resistant MoS2 transistors are developed by engineering electrode-channel interfaces with an all-transfer of van der Waals electrodes. The delivered defect-free, graphene-buffered electrodes keep the electrode-channel interfaces intact and robust. As a result, the as-fabricated MoS2 devices have reduced Schottky barrier heights, leading to a very large on-state current and high carrier mobility. More importantly, the defect-free, hydrophobic graphene buffer layer prevents metal diffusion from the electrodes to MoS2 and the intercalation of water molecules at the electrode-MoS2 interfaces. This enables high resistances of MoS2 devices with all-transfer electrodes to various harsh environments, including humid, oxidizing, and high-temperature environments, surpassing the devices with other kinds of electrodes. The work deepens the understanding of the roles of electrode-channel interfaces in nanoscale devices and provides a promising interface engineering strategy to build nanoscale harsh-environment-resistant devices.

14.
Clin Exp Metastasis ; 40(1): 53-67, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36479657

RESUMO

Nanoparticles possess the ability to adsorb and load other compounds. This study aimed to synthesize a gene carrier with polyethyleneimine (PEI), hyaluronic acid (HA) and mesoporous silica nanoparticles (MSNs) for circ_0086375 delivery to investigate the role and mechanism of circ_0086375 in pancreatic cancer (PC) progression. The expression of genes and proteins was detected by quantitative real-time polymerase chain reaction and Western blot. In vitro experiments were performed by cell counting Kit-8 (CCK-8), 5-Ethynyl-2'-deoxyuridine (EdU) assay, flow cytometry, transwell assay, and wound healing assay, respectively. Dual-luciferase activity assay was used to investigate the target relationship between miR-646 and circ_0086375 or SLC4A4 (solute carrier family 4 member 4). Circ_0086375 loaded PEI/HA-based mesoporous silica nanoparticles (MSNs) were prepared, and in vivo assay was performed by using xenograft tumor model. Circ_0086375 expression was decreased in PC tissues and cells. Restoration of circ_0086375 suppressed PC cell proliferation, migration and invasion in vitro and in vivo. Mechanistically, circ_0086375 acted as a sponge for miR-646 to elevate SLC4A4 expression, which was confirmed to be a target of miR-646. The prepared circ_0086375/MSN/PEI/HA nanocomplexes showed excellent fluorescent properties and a higher cellular uptake of circ_0086375 in PC cells. Moreover, circ_0086375/MSN/PEI/HA showed relatively more anticancer effects in PC than that of circ_0086375 alone in vitro and in vivo. Delivery of circ_0086375 by nanoparticles suppresses the tumorigenicity of pancreatic cancer by miR-646/SLC4A4 axis, suggesting a new potential target for future pancreatic cancer treatment.


Assuntos
MicroRNAs , Neoplasias Pancreáticas , Humanos , Carcinogênese/genética , Transformação Celular Neoplásica , Neoplasias Pancreáticas/genética , Proliferação de Células , MicroRNAs/genética , Simportadores de Sódio-Bicarbonato , Neoplasias Pancreáticas
16.
Int J Oncol ; 62(1)2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36416310

RESUMO

The present study aimed to explore the role of histone chaperone anti­silencing function 1B (ASF1B) in pancreatic cancer and the underlying mechanism. The biological function of ASF1B was investigated in pancreatic cancer cell lines (PANC­1 and SW1990) and a mouse xenograft model. Chromatin immunoprecipitation was used to detect the effect of ASF1B on the transcriptional activity of c­Myc. ASF1B was highly expressed in pancreatic adenocarcinoma (PAAD) samples from The Cancer Genome Atlas. ASF1B expression was positively associated with poor survival rates in patients with PAAD. Silencing of ASF1B in PANC­1 and SW1990 cells inhibited cell proliferation, migration and invasion, and induced apoptosis. Mechanistically, ASF1B increased H3K56 acetylation (H3K56ac) in a CREB­binding protein (CBP)­dependent manner. ASF1B promoted H3K56ac at the c­Myc promoter and increased c­Myc expression. In PANC­1 and SW1990 cells, the CBP inhibitor curcumin and the c­Myc inhibitor 10058­F4 reversed the promoting effects of ASF1B on cell proliferation, migration and invasion. In the mouse xenograft model, ASF1B silencing inhibited tumor growth, and was associated with low H3K56ac and c­Myc expression. ASF1B promoted pancreatic cancer progression by activating c­Myc via CBP­mediated H3K56ac.


Assuntos
Adenocarcinoma , Neoplasias Pancreáticas , Humanos , Camundongos , Animais , Neoplasias Pancreáticas/genética , Pâncreas , Acetilação , Modelos Animais de Doenças , Proteínas de Ciclo Celular
17.
Mol Cell Biochem ; 478(7): 1457-1464, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-36357641

RESUMO

We aimed to build cellular aggregates of TS/A and normal fibroblasts (LX-2) or CAFs (ME-iLX-2), verifying the value of this model in the screening of anticancer drugs and demonstrating the effect of CD44 on aggregate formation. We improved soft agar culture medium to coculture CAFs (NFs) and TS/A and compared the amount and area of cellular aggregates. Eugenol was added to this model to test its value. The transcription of human CD44 was analyzed through RT-qPCR. Cellular aggregates were formed, and both the amount and area of aggregates in the TS/A-ME-iLX-2 coculture group were higher than those in other groups. The eugenol inhibited the formation of TS/A-fibroblasts aggregates. Human CD44 was highly transcripted in TS/A-ME-iLX-2 aggregates. Cocultured cellular aggregates of fibroblasts and TS/A were successfully formed in the improved soft agar culture medium, and the promotion effect of CAFs on cancer cells was further confirmed. The eugenol test showed its value in the screening of anticancer drugs. The RT-qPCR results demonstrated the important effect of CD44 on aggregate formation.


Assuntos
Neoplasias da Mama , Humanos , Animais , Camundongos , Feminino , Ágar , Eugenol , Fibroblastos , Técnicas de Cocultura , Linhagem Celular Tumoral , Meios de Cultura , Proliferação de Células
19.
Int J Cardiol ; 370: 368-377, 2023 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-36174828

RESUMO

BACKGROUND: The lncRNA PVT1 reportedly functions as a competing endogenous RNA (ceRNA) of miR-186 and miR-26b in different tissue types. In this study, we investigated the possible involvement of the miR-186/Srf/Ctgf and miR-26b/Ctgf signaling pathways in the pathogenesis of hypoxia-induced PAH. METHODS: Expression of PVT1, miR-186, miR-26b, and Srf and Ctgf mRNAs were evaluated by real-time polymerase chain reaction. Protein expression of SRF, CTGF, LC3B-I, LC3B-II, and Beclin-I was evaluated using western blotting. The regulatory relationship between the lncRNA, miRNAs, and target mRNAs was explored using luciferase assays. Immunohistochemistry was used to evaluate the expression of SRF and CTGF in situ. MTT assay was performed to assess the proliferation of PASMCs. RESULTS: Exposure to hypoxia markedly altered the expression of PVT1, Srf, Ctgf, miR-186, and miR-26b in a rat model. MiR-186 binding sites in the sequences of Srf mRNA and PVT1 were confirmed by luciferase assays, indicating that miR-186 may interact with both PVT1 and Srf mRNA. Additionally, miR-26b binding sites were identified in the sequences of Ctgf mRNA and PVT1, suggesting that miR-26b may interact with both PVT1 and Ctgf mRNA. In line with this, we found that overexpression of PVT1 reduced expression of miR-26b and miR-186 but activated expression of Srf, Ctgf, LC3B-II, and Beclin-I. CONCLUSIONS: Upregulation of PVT1 by exposure to hypoxia promoted the expression of CTGF, leading to deregulation of autophagy and abnormal proliferation of PASMCs. Dysregulation of the miR-186/Srf/Ctgf and miR-26b/Ctgf signaling pathways may be involved in the pathogenesis of hypoxia-induced PASMCs.


Assuntos
Autofagia , Hipertensão Pulmonar , MicroRNAs , Músculo Liso , RNA Longo não Codificante , Animais , Ratos , Autofagia/genética , Linhagem Celular Tumoral , Proliferação de Células/genética , Hipertensão Pulmonar/genética , Hipóxia/genética , MicroRNAs/genética , MicroRNAs/metabolismo , Músculo Liso/metabolismo , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo , RNA Mensageiro , Transdução de Sinais/genética , Fator de Resposta Sérica/metabolismo , Fator de Crescimento do Tecido Conjuntivo/metabolismo , Artéria Pulmonar/metabolismo , Artéria Pulmonar/patologia
20.
ACS Appl Mater Interfaces ; 14(46): 52508-52515, 2022 Nov 23.
Artigo em Inglês | MEDLINE | ID: mdl-36350274

RESUMO

Lead halide perovskite materials have been emerging as promising candidates for high-performance optoelectronic devices. Significant efforts have sought to realize monocrystalline perovskite films on a large scale. Here, we epitaxially grow monocrystalline methylammonium lead tribromide (MAPbBr3) films on lattice-matched gallium arsenide (GaAs) substrates on a centimeter scale. In particular, a solution-processed lead(II) sulfide (PbS) layer provides a lattice-matched and chemical protective interface for the solid-gas reaction to form MAPbBr3 films on GaAs. Structure characterizations identify the crystal orientations in the trilayer MAPbBr3/PbS/GaAs epistructure and confirm the monocrystalline nature of MAPbBr3 on PbS/GaAs. The dynamic evolution of surface morphologies during the growth indicates a two-step epitaxial process. These fundamental understandings and practical growth techniques offer a viable guideline to approach high-quality perovskite films for previously inaccessible applications.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...