Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
ACS Appl Mater Interfaces ; 6(23): 21558-66, 2014 Dec 10.
Artigo em Inglês | MEDLINE | ID: mdl-25335851

RESUMO

Achieving high current and longtime stable field emission from large area (larger than 1 mm(2)), densely arrayed emitters is of great importance in applications for vacuum electron sources. We report here the preparation of graphene nanosheet-carbon nanotube (GNS-CNT) hybrids by following a process of iron ion prebombardment on Si wafers, catalyst-free growth of GNSs on CNTs, and high-temperature annealing. Structural observations indicate that the iron ion prebombardment influences the growth of CNTs quite limitedly, and the self-assembled GNSs sparsely distributed on the tips of CNTs with their sharp edges unfolded outside. The field emission study indicates that the maximum emission current density (Jmax) is gradually promoted after these treatments, and the composition with GNSs is helpful for decreasing the operation fields of CNTs. An optimal Jmax up to 85.10 mA/cm(2) is achieved from a 4.65 mm(2) GNS-CNT sample, far larger than 7.41 mA/cm(2) for the as-grown CNTs. This great increase of Jmax is ascribed to the reinforced adhesion of GNS-CNT hybrids to substrates. We propose a rough calculation and find that this adhesion is promoted by 7.37 times after the three-step processing. We consider that both the ion prebombardment produced rough surface and the wrapping of CNT foot by catalyst residuals during thermal processing are responsible for this enhanced adhesion. Furthermore, the three-step prepared GNS-CNT hybrids present excellent field emission stability at high emission current densities (larger than 20 mA/cm(2)) after being perfectly aged.

2.
ACS Appl Mater Interfaces ; 6(7): 5137-43, 2014 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-24621129

RESUMO

Figuring out the underlying relationship between the field emission (FE) properties and the ion irradiation induced structural change of carbon nanotubes (CNTs) is of great importance in developing high-performance field emitters. We report here the FE properties of Si and C ion irradiated CNTs with different irradiation doses. It is found that the FE performance of the ion irradiated CNTs ameliorates before and deteriorates after an irradiation-ion-species related dose. The improved FE properties are ascribed to the increased amount of defects, while the degraded FE performance is attributed to the great shape change of CNTs. These two structural changes are further characterized by a structural damage related parameter: dpa (displacement per atom), and the FE performance of the ion irradiated CNTs is surprisingly found to be mainly dependent on the dpa. The optimal dpa for FE of the ion irradiated CNTs is ∼0.60. We ascribe this to the low irradiation doses and the low substrate temperature that make the ion irradiation play a more important role in producing defects rather than element doping. Furthermore, the ion irradiated CNTs exhibit excellent FE stability, showing promising prospects in practical applications.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...