Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nat Commun ; 15(1): 5936, 2024 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-39009560

RESUMO

Jellyfish exhibit innovative swimming patterns that contribute to exploring the origins of animal locomotion. However, the genetic and cellular basis of these patterns remains unclear. Herein, we generated chromosome-level genome assemblies of two jellyfish species, Turritopsis rubra and Aurelia coerulea, which exhibit straight and free-swimming patterns, respectively. We observe positive selection of numerous genes involved in statolith formation, hair cell ciliogenesis, ciliary motility, and motor neuron function. The lineage-specific absence of otolith morphogenesis- and ciliary movement-related genes in T. rubra may be associated with homeostatic structural statocyst loss and straight swimming pattern. Notably, single-cell transcriptomic analyses covering key developmental stages reveal the enrichment of diapause-related genes in the cyst during reverse development, suggesting that the sustained diapause state favours the development of new polyps under favourable conditions. This study highlights the complex relationship between genetics, locomotion patterns and survival strategies in jellyfish, thereby providing valuable insights into the evolutionary lineages of movement and adaptation in the animal kingdom.


Assuntos
Cifozoários , Análise de Célula Única , Natação , Animais , Cifozoários/genética , Cifozoários/fisiologia , Diapausa/genética , Genômica/métodos , Genoma/genética , Transcriptoma , Perfilação da Expressão Gênica
2.
Front Nutr ; 11: 1404123, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38966421

RESUMO

Background: Renshen Yangrong decoction (RSYRD) has been shown therapeutic effects on secondary malaise and fatigue (SMF). However, to date, its bioactive ingredients and potential targets remain unclear. Purpose: The purpose of this study is to assess the potential ingredients and targets of RSYRD on SMF through a comprehensive strategy integrating network pharmacology, Mendelian randomization as well as molecular docking verification. Methods: Search for potential active ingredients and corresponding protein targets of RSYRD on TCMSP and BATMAN-TCM for network pharmacology analysis. Mendelian randomization (MR) was performed to find therapeutic targets for SMF. The eQTLGen Consortium (sample sizes: 31,684) provided data on cis-expression quantitative trait loci (cis-eQTL, exposure). The summary data on SMF (outcome) from genome-wide association studies (GWAS) were gathered from the MRC-IEU Consortium (sample sizes: 463,010). We built a target interaction network between the probable active ingredient targets of RSYRD and the therapeutic targets of SMF. We next used drug prediction and molecular docking to confirm the therapeutic value of the therapeutic targets. Results: In RSYRD, network pharmacology investigations revealed 193 possible active compounds and 234 associated protein targets. The genetically predicted amounts of 176 proteins were related to SMF risk in the MR analysis. Thirty-seven overlapping targets for RSYRD in treating SMF, among which six (NOS3, GAA, IMPA1, P4HTM, RB1, and SLC16A1) were prioritized with the most convincing evidence. Finally, the 14 active ingredients of RSYRD were identified as potential drug molecules. The strong affinity between active components and putative protein targets was established by molecular docking. Conclusion: This study revealed several active components and possible RSYRD protein targets for the therapy of SMF and provided novel insights into the feasibility of using Mendelian randomization for causal inference between Chinese medical formula and disease.

3.
ISME Commun ; 4(1): ycae036, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38571744

RESUMO

Host-associated microbiomes can play key roles in the metamorphosis of animals. Most scyphozoan jellyfish undergo strobilation in their life cycles, similar to metamorphosis in classic bilaterians. The exploration of jellyfish microbiomes may elucidate the ancestral mechanisms and evolutionary trajectories of metazoan-microbe associations and interactions during metamorphosis. However, current knowledge of the functional features of jellyfish microbiomes remains limited. Here, we performed a genome-centric analysis of associated microbiota across four successive life stages (polyp, early strobila, advanced strobila, and ephyra) during strobilation in the common jellyfish Aurelia coerulea. We observed shifts in taxonomic and functional diversity of microbiomes across distinct stages and proposed that the low microbial diversity in ephyra stage may be correlated with the high expression of the host-derived antimicrobial peptide aurelin. Furthermore, we recovered 43 high-quality metagenome-assembled genomes and determined the nutritional potential of the dominant Vibrio members. Interestingly, we observed increased abundances of genes related to the biosynthesis of amino acids, vitamins, and cofactors, as well as carbon fixation during the loss of host feeding ability, indicating the functional potential of Aurelia-associated microbiota to support the synthesis of essential nutrients. We also identified several potential mechanisms by which jellyfish-associated microbes establish stage-specific community structures and maintain stable colonization in dynamic host environments, including eukaryotic-like protein production, bacterial secretion systems, restriction-modification systems, and clustered regularly interspaced short palindromic repeats-Cas systems. Our study characterizes unique taxonomic and functional changes in jellyfish microbiomes during strobilation and provides foundations for uncovering the ancestral mechanism of host-microbe interactions during metamorphosis.

4.
Mol Ecol ; 33(4): e17249, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38133544

RESUMO

Understanding the mechanisms underlying diapause formation is crucial for gaining insight into adaptive survival strategies across various species. In this study, we aimed to uncover the pivotal role of temperature and food availability in regulating diapausing podocyst formation in the jellyfish Aurelia coerulea. Furthermore, we explored the cellular and molecular basis of diapause formation using single-cell RNA sequencing. Our results showed cell-type-specific transcriptional landscapes during podocyst formation, which were underscored by the activation of specific transcription factors and signalling pathways. In addition, we found that the heat shock protein-coding genes HSC70 and HSP90a potentially act as hub genes that regulate podocyst formation. Finally, we mapped the single-cell atlas of diapausing podocysts and identified cell types involved in metabolism, environmental sensing, defence and development that may collectively contribute to the long-term survival and regulated excystment of diapausing podocysts. Taken together, the findings of this study provide novel insights into the molecular mechanisms that regulate diapause formation and contributes to a better understanding of adaptive survival strategies in a variety of ecological contexts.


Assuntos
Diapausa , Cifozoários , Animais , Cifozoários/genética , Temperatura , Diapausa/genética
5.
iScience ; 26(12): 108444, 2023 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-38125018

RESUMO

Jellyfish represent one of the most basal animal groups with complex life cycles. The polyp-to-medusa transition, termed strobilation, is the pivotal process that determines the switch in swimming behavior and jellyfish blooms. Their microbiota plays an essential role in strobilation. Here, we investigated microbiota-mediated host phenotype dynamics during strobilation in the jellyfish Aurelia coerulea via antibiotic-induced microbiome alteration. Microbial depletion delayed the initiation of strobilation and resulted in fewer segments and ephyrae, which could be restored via microbial recolonization. Jellyfish-associated cyanobacteria, which were eliminated by antibiotics in the polyp stage, had the potential to supply retinal and trigger the retinoic acid signaling cascade, which drove the strobilation process. The microbiota regulated nematocyte development and differentiation, influencing the feeding and growth of the jellyfish. The findings improve our understanding of jellyfish-microbe interactions and provide new insights into the role of the microbiota in shaping feeding behavior through nematocyte dynamics.

6.
Cancer Manag Res ; 13: 1029-1039, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33574702

RESUMO

BACKGROUND: The dysregulated circular RNAs (circRNAs) are relevant to the development of non-small cell lung cancer (NSCLC). Nevertheless, the function and mechanism of circRNA zinc finger protein 609 (circZNF609) in NSCLC development remain uncertain. METHODS: Sixty-two NSCLC patients were recruited. circZNF609, microRNA-623 (miR-623) and forkhead box M1 (FOXM1) abundances were measured via quantitative reverse transcription polymerase chain reaction or Western blot. Cell viability, apoptosis, migration and invasion were analyzed via cell counting kit-8 (CCK8), flow cytometry, caspase3 activity, transwell assay and Western blot. The interaction between miR-623 and circZNF609 or FOXM1 was analyzed via dual-luciferase reporter analysis, RNA immunoprecipitation and pull-down. The function of circZNF609 on cell growth in vivo was tested via xenograft model. RESULTS: circZNF609 abundance was enhanced in NSCLC tissues and cells. High expression of circZNF609 indicated the lower overall survival. circZNF609 interference restrained cell viability, migration and invasion and increased apoptosis. miR-623 was targeted via circZNF609. FOXM1 was targeted via miR-623 and regulated via circZNF609. miR-623 knockdown or FOXM1 overexpression mitigated the role of circZNF609 silence in NSCLC development. circZNF609 knockdown decreased NSCLC xenograft tumor growth. CONCLUSION: circZNF609 knockdown repressed NSCLC development via regulating miR-623 and FOXM1.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...