Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Mol Plant ; 16(9): 1460-1477, 2023 09 04.
Artigo em Inglês | MEDLINE | ID: mdl-37674315

RESUMO

Improving grain quality is a primary objective in contemporary rice breeding. Japanese modern rice breeding has developed two different types of rice, eating and sake-brewing rice, with different grain characteristics, indicating the selection of variant gene alleles during the breeding process. Given the critical importance of promptly and efficiently identifying genes selected in past breeding for future molecular breeding, we conducted genome scans for divergence, genome-wide association studies, and map-based cloning. Consequently, we successfully identified two genes, OsMnS and OsWOX9D, both contributing to rice grain traits. OsMnS encodes a mannan synthase that increases the white core frequency in the endosperm, a desirable trait for sake brewing but decreases the grain appearance quality. OsWOX9D encodes a grass-specific homeobox-containing transcription factor, which enhances grain width for better sake brewing. Furthermore, haplotype analysis revealed that their defective alleles were selected in East Asia, but not Europe, during modern improvement. In addition, our analyses indicate that a reduction in grain mannan content during African rice domestication may also be caused a defective OsMnS allele due to breeding selection. This study not only reveals the delicate balance between grain appearance quality and nutrition in rice but also provides a new strategy for isolating causal genes underlying complex traits, based on the concept of "breeding-assisted genomics" in plants.


Assuntos
Oryza , Proteínas de Saccharomyces cerevisiae , Oryza/genética , Bebidas Alcoólicas , Estudo de Associação Genômica Ampla , Mananas , Fermentação , Saccharomyces cerevisiae , Melhoramento Vegetal , Grão Comestível/genética
2.
Plant Physiol ; 191(3): 1561-1573, 2023 03 17.
Artigo em Inglês | MEDLINE | ID: mdl-36652387

RESUMO

Genome-wide association studies (GWASs) are used to detect quantitative trait loci (QTL) using genomic and phenotypic data as inputs. While genomic data are obtained with high throughput and low cost, obtaining phenotypic data requires a large amount of effort and time. In past breeding programs, researchers and breeders have conducted a large number of phenotypic surveys and accumulated results as legacy data. In this study, we conducted a GWAS using phenotypic data of temperate japonica rice (Oryza sativa) varieties from a public database. The GWAS using the legacy data detected several known agriculturally important genes, indicating reliability of the legacy data for GWAS. By comparing the GWAS using legacy data (L-GWAS) and a GWAS using phenotypic data that we measured (M-GWAS), we detected reliable QTL for agronomically important traits. These results suggest that an L-GWAS is a strong alternative to replicate tests to confirm the reproducibility of QTL detected by an M-GWAS. In addition, because legacy data have often been accumulated for many traits, it is possible to evaluate the pleiotropic effect of the QTL identified for the specific trait that we focused on with respect to various other traits. This study demonstrates the effectiveness of using legacy data for GWASs and proposes the use of legacy data to accelerate genomic breeding.


Assuntos
Oryza , Locos de Características Quantitativas , Locos de Características Quantitativas/genética , Estudo de Associação Genômica Ampla/métodos , Oryza/genética , Reprodutibilidade dos Testes , Melhoramento Vegetal , Fenótipo , Polimorfismo de Nucleotídeo Único/genética
3.
Nat Commun ; 13(1): 5665, 2022 09 29.
Artigo em Inglês | MEDLINE | ID: mdl-36175401

RESUMO

Environment is an important determinant of agricultural productivity; therefore, crops have been bred with traits adapted to their environment. It is assumed that the physiology of seed germination is optimised for various climatic conditions. Here, to understand the genetic basis underlying seed germination, we conduct a genome-wide association study considering genotype-by-environment interactions on the germination rate of Japanese rice cultivars under different temperature conditions. We find that a 4 bp InDel in one of the 14-3-3 family genes, GF14h, preferentially changes the germination rate of rice under optimum temperature conditions. The GF14h protein constitutes a transcriptional regulatory module with a bZIP-type transcription factor, OREB1, and a florigen-like protein, MOTHER OF FT AND TFL 2, to control the germination rate by regulating abscisic acid (ABA)-responsive genes. The GF14h loss-of-function allele enhances ABA signalling and reduces the germination rate. This allele is found in rice varieties grown in the northern area and in modern cultivars of Japan and China, suggesting that it contributes to the geographical adaptation of rice. This study demonstrates the complicated molecular system involved in the regulation of seed germination in response to temperature, which has allowed rice to be grown in various geographical locations.


Assuntos
Germinação , Oryza , Ácido Abscísico , Fatores de Transcrição de Zíper de Leucina Básica , Florígeno , Estudo de Associação Genômica Ampla , Germinação/genética , Oryza/genética , Melhoramento Vegetal , Temperatura
4.
Plant Cell Physiol ; 62(6): 942-947, 2021 Sep 30.
Artigo em Inglês | MEDLINE | ID: mdl-33836084

RESUMO

Traditional breeding for high-yielding crops has mainly relied on the widespread cultivation of gibberellin (GA)-deficient semi-dwarf varieties, as dwarfism increases lodging resistance and allows for high nitrogen use, resulting in high grain yield. Although the adoption of semi-dwarf varieties in rice and wheat breeding brought big success to the 'Green Revolution' in the 20th century, it consequently increased the demand for nitrogen-based fertilizer, which causes severe threat to ecosystems and sustainable agriculture. To make the 'Green Revolution' truly green, it is necessary to develop new varieties with high nitrogen use efficiency (NUE). Under this demand, research on NUE, mainly for rice, has made great strides in the last decade. This mini-review focuses on three aspects of recent epoch-making findings on rice breeding for high NUE. The first one on 'NUE genes related to GA signaling' shows how promising it is to improve NUE in semi-dwarf Green Revolution varieties. The second aspect centers around the nitrate transporter1.1B, NRT1.1B; studies have revealed a nutrient signaling pathway through the discovery of the nitrate-NRT1.1B-SPX4-NLP3 cascade. The last one is based on the recent finding that the teosinte branched1, cycloidea, proliferating cell factor (TCP)-domain protein 19 underlies the genomic basis of geographical adaptation to soil nitrogen; OsTCP19 regulates the expression of a key transacting factor, DLT/SMOS2, which participates in the signaling of four different phytohormones, GA, auxin, brassinosteroid and strigolactone. Collectively, these breakthrough findings represent a significant step toward breeding high-NUE rice in the future.


Assuntos
Produtos Agrícolas/fisiologia , Giberelinas/metabolismo , Nitrogênio/metabolismo , Proteínas de Plantas/metabolismo , Regulação da Expressão Gênica de Plantas , Oryza/genética , Oryza/metabolismo , Melhoramento Vegetal , Reguladores de Crescimento de Plantas/metabolismo , Proteínas de Plantas/genética , Solo/química
6.
Plant J ; 103(1): 266-278, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32072700

RESUMO

The morphology of rice (Oryza sativa L.) panicles is an important determinant of grain yield, and elucidation of the genetic control of panicle structure is very important for fulfilling the demand for high yield in breeding programs. In a quantitative trait locus (QTL) study using 82 backcross inbred lines (BILs) derived from Koshihikari and Habataki, 68 QTLs for 25 panicle morphological traits were identified. Gene expression profiling from inflorescence meristems of BILs was obtained. A combination of phenotypic QTL (pQTL) and expression QTL (eQTL) analysis revealed co-localization between pQTLs and eQTLs, consistent with significant correlations between phenotypic traits and gene expression levels. By combining pQTL and eQTL data, two genes were identified as controlling panicle structure: OsMADS18 modulates the average length of the primary rachis and OsFTL1 has pleiotropic effects on the total number of secondary rachides, number of grains per panicle, plant height and the length of flag leaves. Phenotypes were confirmed in RNA interference knocked-down plants and overexpressor lines. The combination of pQTL and eQTL analysis could facilitate identification of genes involved in rice panicle formation.


Assuntos
Genes de Plantas/genética , Inflorescência/genética , Oryza/genética , Locos de Características Quantitativas/genética , Grão Comestível/genética , Grão Comestível/crescimento & desenvolvimento , Estudo de Associação Genômica Ampla , Inflorescência/crescimento & desenvolvimento , Oryza/crescimento & desenvolvimento , Característica Quantitativa Herdável , Transcriptoma
7.
Proc Natl Acad Sci U S A ; 116(42): 21262-21267, 2019 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-31570620

RESUMO

Elucidation of the genetic control of rice architecture is crucial due to the global demand for high crop yields. Rice architecture is a complex trait affected by plant height, tillering, and panicle morphology. In this study, principal component analysis (PCA) on 8 typical traits related to plant architecture revealed that the first principal component (PC), PC1, provided the most information on traits that determine rice architecture. A genome-wide association study (GWAS) using PC1 as a dependent variable was used to isolate a gene encoding rice, SPINDLY (OsSPY), that activates the gibberellin (GA) signal suppression protein SLR1. The effect of GA signaling on the regulation of rice architecture was confirmed in 9 types of isogenic plant having different levels of GA responsiveness. Further population genetics analysis demonstrated that the functional allele of OsSPY associated with semidwarfism and small panicles was selected in the process of rice breeding. In summary, the use of PCA in GWAS will aid in uncovering genes involved in traits with complex characteristics.


Assuntos
Oryza/genética , Genes de Plantas/genética , Estudo de Associação Genômica Ampla/métodos , Giberelinas/metabolismo , Oryza/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Análise de Componente Principal/métodos , Locos de Características Quantitativas/genética
8.
J Integr Plant Biol ; 61(8): 908-910, 2019 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-31271265
10.
Plant Cell Environ ; 41(12): 2731-2743, 2018 12.
Artigo em Inglês | MEDLINE | ID: mdl-29981171

RESUMO

Elucidation of the genetic control of rice seedling vigour is now paramount with global shifts towards direct seeding of rice and the consequent demand for early vigour traits in breeding programmes. In a genome-wide association study using an indica-predominant diversity panel, we identified quantitative trait loci (QTLs) for root length and root number in rice seedlings. Among the identified QTLs, one QTL for lateral root number on chromosome 11, qTIPS-11, was associated with a 32.4% increase in lateral root number. The locus was validated in independent backgrounds, and a predicted glycosyl hydrolase, TIPS-11-9, was identified as the causal gene for observed phenotypic differences. TIPS-11-9 was differentially expressed in emerging lateral roots of contrasting qTIPS-11 haplotypes, which was likely due to differences in cis-regulatory elements and auxin responsiveness. Abolishment of Tips-11-9 function through T-DNA insertion in a qTIPS-11-positive background resulted in a reduction of lateral root number, which negatively affected biomass accumulation, particularly under phosphorous-limiting conditions. Marker-assisted introgression of qTIPS-11 into modern indica varieties will aid in the generation of varieties adapted to direct seeding and thus facilitate the adoption of direct seeding practices in tropical Asia.


Assuntos
Oryza/genética , Raízes de Plantas/crescimento & desenvolvimento , Cromossomos de Plantas/genética , Produção Agrícola , Genes de Plantas/genética , Genes de Plantas/fisiologia , Estudo de Associação Genômica Ampla , Haplótipos , Desequilíbrio de Ligação/genética , Oryza/crescimento & desenvolvimento , Oryza/fisiologia , Melhoramento Vegetal/métodos , Raízes de Plantas/fisiologia , Locos de Características Quantitativas/genética , Característica Quantitativa Herdável
11.
PLoS One ; 12(6): e0179484, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28651022

RESUMO

Agricultural usage of phosphorus (P) is largely driven by the amount of P removed from fields in harvested plant matter as offtake needs to be balanced by P fertilizer application. Reducing P concentration in grains is a way to decrease P offtake and reduce P fertilizer requirements or soil P mining where insufficient P is applied. Our objective was to assesses the genotypic variation for grain P concentration present within the rice gene pool and resolve to what extent it is affected by environment (P supply) or associated with genetic factors. About 2-fold variation in grain P concentrations were detected in two rice diversity panels, however, environmental effects were stronger than genotype effects. Genome wide association studies identified several putative loci associated with grain P concentrations. In most cases this was caused by minor haplotype associations with high grain P concentrations while associations with reduced P concentrations were identified on chromosomes 1, 6, 8, 11 and 12. Only the latter type of locus is of interest in breeding for reduced P concentrations and the most promising locus was at 20.7 Mb on chromosome 8, where a rare haplotype that was absent from all modern varieties studied reduced grain P concentration by 9.3%. This and all other loci were not consistently detected across environments or association panels, confirming that genetic effects were small compared to effects of environment. We conclude that the genetic effects detected were not sufficiently large or consistent to be of utility in plant breeding. Instead breeding efforts may have to rely on small to medium effect mutants already identified and attempt to achieve a more pronounced reduction in grain P concentration through the introgression of these mutants into a single genetic background.


Assuntos
Meio Ambiente , Fertilizantes , Oryza/química , Fósforo/análise , Genes de Plantas , Genótipo , Haplótipos , Oryza/genética , Locos de Características Quantitativas , Solo
12.
J Exp Bot ; 67(5): 1221-9, 2016 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-26662950

RESUMO

Inefficient use of phosphorus (P) in agriculture adds to production costs, increases the risk of eutrophication of waterways, and contributes to the rapid depletion of the world's non-renewable rock phosphate supplies. The removal of large quantities of P from fields in harvested grains is a major driver in the global P cycle, but opportunities exist to reduce the amount of P in harvested grains through plant breeding. Using rice (Oryza sativa L.) as a model crop, we examine our current understanding of the process of P loading into grain and its regulation by genetic and environmental factors. We expose a dearth of knowledge on the physiological processes involved in loading P into grains, poor resolution of the genes and networks involved in P mobilization from vegetative tissues to grains, and limited understanding of genetic versus environmental contributions to variation in grain P concentrations observed among genotypes. We discuss potential breeding strategies and highlight key research gaps that should be addressed to facilitate these breeding approaches. Given the strong economic and environmental incentives for a low grain P trait, we suggest that some of the investment and resources currently directed to determining the molecular regulation of P starvation responses in model plant species should be diverted to resolving the physiology, genetics, and molecular regulation of P loading into cereal grains.


Assuntos
Produtos Agrícolas/metabolismo , Fósforo/metabolismo , Produtos Agrícolas/genética , Grão Comestível , Meio Ambiente , Genótipo , Proteínas de Transporte de Fosfato/genética , Proteínas de Transporte de Fosfato/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...