Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Sensors (Basel) ; 23(9)2023 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-37177638

RESUMO

The communication range of magnetic-induction (MI) technology in extreme environments such as underwater or underground is limited by the dipole-like attenuation behavior of the magnetic field as well as the eddy current induced loss in conductive media, and therefore a highly sensitive receiver is generally required. In this work, we propose the use of a highly sensitive superconducting quantum interference device (SQUID) in MI communication and try to provide a comprehensive investigation on developing a SQUID-based receiver for practical MI applications. A portable receiver scheme integrating a SQUID sensor and a coil-based flux transformer was proposed. The high sensitivity and long-range communication capability of the proposed receiver was experimentally demonstrated by spectroscopic measurements and reception experiments on a receiver prototype. Based on the experimental demonstrations, the sensitivity optimization of the proposed scheme was further investigated by simulation studies, which suggest that a communication distance exceeding 100 m and a channel capacity of ∼20 kb/s in underwater environment could be achieved based upon the optimization of the developed prototype. The results presented in this work have highlighted the potential of deploying SQUID sensors for long-range MI applications in extreme environments.

2.
Nanomaterials (Basel) ; 12(6)2022 Mar 08.
Artigo em Inglês | MEDLINE | ID: mdl-35335705

RESUMO

The use of lead-free ceramic film materials with positive temperature coefficient of resistivity (PTCR) is widespread in temperature heaters and sensors in micro-electromechanical systems. In this research, the out of plane transport properties of the BiFeO3 (BFO) films have been studied. Surprisingly, PTCR was found in the BFO ceramic films due to the strongly correlated interaction between the multiferroic material BFO and the superconductor YBCO perovskite oxides. To our knowledge, this is the first report on the PTCR effect of BFO films. The BFO/YBCO interface and the bulk conductivity of BFO are important for the PTCR effect, as they make it possible to compare the transport properties of Au/BFO/YBCO- and YBCO/BFO/YBCO-type structures. PTCR was observed in Au/BFO/YBCO at a bias voltage of more than 2 V, but not in the YBCO/BFO/YBCO, even with a 40 V bias voltage. PTCR was found after BFO breakdown of a YBCO/BFO/YBCO capacitor. This indicated that the conductivity of BFO is critical for PTCR. The dependence of PTCR on the superconducting transition temperature illustrates that a cooper-pair can be injected into BFO. Our work presents a method by which to produce a lead-free ceramic film material with PTCR.

3.
Opt Express ; 26(10): 12514-12521, 2018 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-29801289

RESUMO

We propose and demonstrate the operation of Q-switched mode-locked square-wave pulses in a thulium-holmium co-doped fiber laser. By using a nonlinear amplifying loop mirror, continuous square-wave dissipative soliton resonance pulse is obtained with 4.4 MHz repetition rate. With the increasing pump power, square-wave pulse duration can be broadened from 1.7 ns to 3.2 ns. On such basis Q-switched mode-locked operation is achieved by properly setting the pump power and the polarization controllers. The internal mode-locked pulses in Q-switched envelope still keep square-wave type. The Q-switched repetition rate can be varied from 41.6 kHz to 74 kHz by increasing pump power. The corresponding average single-pulse energy increases from 2.67 nJ to 5.2 nJ. The average peak power is also improved from 0.6 W to 1.1 W when continuous square-wave operation is changed into Q-switched mode-locked operation. It indicates that Q-switched mode-locked operation is an effective method to increase the square-wave pulse energy and peak power.

4.
Guang Pu Xue Yu Guang Pu Fen Xi ; 24(3): 368-71, 2004 Mar.
Artigo em Chinês | MEDLINE | ID: mdl-15760003

RESUMO

A reflective flow cell was developed and coupled to a sequential injection system and optical fiber photometric detection system based on emitting diode light source. A multistrand bifurcated optical fiber was coupled with incident light, detector and flow cell. Optical fibers were used to carry light from the electronics unit to a reflective flow-through cell and back. The liquid flow path through the cell is linear with a large exit aperture such that bubbles are not trapped in the optical path. The optical arrangement is such that the incident light crosses the liquid flow orthogonally and is reflected back to the receiver fiber. This arrangement reduces the reflective index sensitivity by an order of magnitude relative to a conventional flow cell. The cell showed good immunity to refractive index and air bubble effects. The chromogenic reaction of chloride ion with mercury thiocyanate-iron(III) was used as a model reaction to optimize the experiment system and check the optical system. The reflectance of the reaction was monitored with blue emitting diode. The linear range was 0-100 mg x L(-1) Cl-. A detection limit (3sigma) of 1.2 mg x L(-1), precision of 1.5% (n = 11), and a throughput of 30 samples per hour were achieved.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA