Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Angew Chem Int Ed Engl ; 63(15): e202319978, 2024 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-38369652

RESUMO

Ethylene (C2H4) purification and propylene (C3H6) recovery are highly relevant in polymer synthesis, yet developing physisorbents for these industrial separation faces the challenges of merging easy scalability, economic feasibility, high moisture stability with great separation efficiency. Herein, we reported a robust and scalable MOF (MAC-4) for simultaneous recovery of C3H6 and C2H4. Through creating nonpolar pores decorated by accessible N/O sites, MAC-4 displays top-tier uptakes and selectivities for C2H6 and C3H6 over C2H4 at ambient conditions. Molecular modelling combined with infrared spectroscopy revealed that C2H6 and C3H6 molecules were trapped in the framework with stronger contacts relative to C2H4. Breakthrough experiments demonstrated exceptional separation performance for binary C2H6/C2H4 and C3H6/C2H4 as well as ternary C3H6/C2H6/C2H4 mixtures, simultaneously affording record productivities of 27.4 and 36.2 L kg-1 for high-purity C2H4 (≥99.9 %) and C3H6 (≥99.5 %). MAC-4 was facilely prepared at deckgram-scale under reflux condition within 3 hours, making it as a smart MOF to address challenging gas separations.

2.
Angew Chem Int Ed Engl ; 62(43): e202311654, 2023 Oct 23.
Artigo em Inglês | MEDLINE | ID: mdl-37679304

RESUMO

Herein, a 2-fold interpenetrated metal-organic framework (MOF) Zn-BPZ-TATB with accessible N/O active sites in nonpolar pore surfaces was reported for one-step C2 H4 purification from C2 H6 or C3 H6 mixtures as well as recovery of C3 H6 from C2 H6 /C3 H6 /C2 H4 mixtures. The MOF exhibits the favorable C2 H6 and C3 H6 uptakes (>100 cm3 g-1 at 298 K under 100 kPa) as well as selective adsorption of C2 H6 and C3 H6 over C2 H4 . The C3 H6 - and C2 H6 -selective feature were investigated detailedly by experimental tests as well as sorption kinetic studyies. Molecular modelling revealed the multiple interactions between C3 H6 or C2 H6 molecules and methyl groups as well as triazine rings in pores. Zn-BPZ-TATB not only can directly generate 323.4 L kg-1 and 15.4 L kg-1 of high-purity (≥99.9 %) C2 H4 from C3 H6 /C2 H4 and C2 H6 /C2 H4 mixtures, but also provide a large high-purity (≥99.5 %) C3 H6 recovery capacity of 60.1 L kg-1 from C3 H6 /C2 H4 mixtures. More importantly, the high-purity C3 H6 (≥99.5 %) and C2 H4 (≥99.9 %) with the productivities of 38.2 and 12.7 L kg-1 can be simultaneously obtained from C2 H6 /C3 H6 /C2 H4 mixtures through a single adsorption/desorption cycle.

3.
Inorg Chem ; 62(40): 16574-16581, 2023 Oct 09.
Artigo em Inglês | MEDLINE | ID: mdl-37753782

RESUMO

Separating acetylene (C2H2) from other light hydrocarbons and carbon dioxide (CO2) mixtures under mild conditions poses significant challenges due to the remarkably similar properties between C2H2 and those gases. For the goal of C2H2 separation, a F-functionalized organic linker, H2F-PyIP = 2-fluorine-5-(4-pyridyl)isophthalic acid, was designed, and the corresponding metal-organic framework (MOF), {[Co2(F-PyIP)2DMF]·4H2O}n (1), was constructed. The MOF with open channels decorated by the active sites of the F groups revealed the exceptional C2H2 uptake and selectivity over CO2, C2H4, and CH4. The breakthrough experiments with different molar ratios of C2H2-C2H4, C2H2-CO2, and other gas mixtures further verified superior separation capacity of the MOF. In particular, the dynamic separation time intervals for gas mixtures (C2H2/CO2 = 1:1, 1:5, 1:10, and 1:20) fell in the range 30-44 min, highlighting the potential of the MOF for tackling the challenging C2H2/CO2 separation process.

4.
Chem Sci ; 14(21): 5643-5649, 2023 May 31.
Artigo em Inglês | MEDLINE | ID: mdl-37265732

RESUMO

Chloride ion batteries (CIBs) have drawn growing attention as attractive candidates for large-scale energy storage technology because of their high theoretical energy densities (2500 W h L-1), dendrite-free characteristics and abundance of chloride-containing materials available worldwide. However, the further development of CIBs is greatly limited by sluggish Cl- diffusion and distinct structural variation of cathode materials, resulting in severe decayed capacity and inferior rate performance. Metal-organic framework (MOF) materials possess regular pores/channels and flexible structural designability to accommodate charge carrier ions, but the application of MOFs in anion-type batteries has not been reported. Here, we demonstrate the first example of Ni(dpip) with two different opening sizes of tubular channels serving as the cathode for high performance CIBs. The Ni-based MOF exhibited a stable reversible capacity of 155 mA h g-1 with an admirable low capacity decay of 0.026% per cycle over 500 cycles and superior kinetics with a 10-10 cm2 s-1 average diffusion coefficient for chloride ions as well. The high performance of the Ni(dpip) cathode results from the synergetic redox couples of Ni metal nodes and N-ligands, the unique double-channel structure for reversible Cl-storage, and the low chloride diffusion energy barrier. This work switches on the new application of MOF-based materials as cathodes for CIBs.

5.
Small ; 19(38): e2302975, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37194973

RESUMO

Considering the significant application of acetylene (C2 H2 ) in the manufacturing and petrochemical industries, the selective capture of impurity carbon dioxide (CO2 ) is a crucial task and an enduring challenge. Here, a flexible metal-organic framework (Zn-DPNA) accompanied by a conformation change of the Me2 NH2 + ions in the framework is reported. The solvate-free framework provides a stepped adsorption isotherm and large hysteresis for C2 H2 , but type-I adsorption for CO2 . Owing to their uptakes difference before gate-opening pressure, Zn-DPNA demonstrated favorable inverse CO2 /C2 H2 separation. According to molecular simulation, the higher adsorption enthalpy of CO2 (43.1 kJ mol-1 ) is due to strong electrostatic interactions with Me2 NH2 + ions, which lock the hydrogen-bond network and narrow pores. Furthermore, the density contours and electrostatic potential verifies the middle of the cage in the large pore favors C2 H2 and repels CO2 , leading to the expansion of the narrow pore and further diffusion of C2 H2 . These results provide a new strategy that optimizes the desired dynamic behavior for one-step purification of C2 H2 .

6.
Chem Sci ; 14(3): 533-539, 2023 Jan 18.
Artigo em Inglês | MEDLINE | ID: mdl-36741528

RESUMO

The utilization of dative B←N bonds for the creation of crystalline organic framework (BNOF) has increasingly received intensive interest; however, the shortage of permanent porosity is an obstacle that must be overcome to guarantee their application as porous materials. Here, we report the first microporous crystalline framework, BNOF-1, that is assembled through sole monomers, which can be scalably synthesized by the cheap 4-pyridine boronic acid. The 2D networks of BNOF-1 were stacked in parallel to generate a highly porous supramolecular open framework, which possessed not only the highest BET surface area of 1345 m2 g-1 amongst all of the BNOFs but also features a record-high uptake of C2H2 and CO2 in covalent organic framework (COF) materials to date. Dynamic breakthrough experiments demonstrated that BNOF-1 material can efficiently separate C2H2/CO2 mixtures. In addition, the network can be regenerated in organic solvents with no loss in performance, making its solution processable. We believe that BNOF-1 would greatly diversify the reticular chemistry and open new avenues for the application of BNOFs.

7.
Angew Chem Int Ed Engl ; 61(48): e202213015, 2022 Nov 25.
Artigo em Inglês | MEDLINE | ID: mdl-36202779

RESUMO

Adsorption technology based on ethane-selective materials is a promising alternative to energy-intensive cryogenic distillation for separating ethane (C2 H6 ) and ethylene (C2 H4 ). We employed a pore engineering strategy to tune the pore environment of a metal-organic framework (MOF) through organic functional groups and boosted the C2 H6 /C2 H4 separation of the MOF. Introduction of amino (-NH2 ) groups into Tb-MOF-76 not only decreased pore sizes but also facilitated multiple guest-host interactions in confined pores. The NH2 -functionalized Tb-MOF-76(NH2 ) has increased C2 H6 and C2 H4 uptakes and C2 H6 /C2 H4 selectivity. The results of experimental and simulated transient breakthroughs reveal that Tb-MOF-76(NH2 ) has significantly improved one-step separation performance for C2 H6 /C2 H4 mixtures with a high C2 H4 (>99.95 %) productivity of 17.66 L kg-1 compared to 7.53 L kg-1 by Tb-MOF-76, resulting from the suitable pore confinement and accessible -NH2 groups on pore surfaces.

8.
Artigo em Inglês | MEDLINE | ID: mdl-35642726

RESUMO

Removing CO2 impurity is an essential industrial process in the purification of hydrocarbons. The most promising strategy is the one-step collection of high-purity hydrocarbons by employing CO2-selective adsorbents, which requires improving the CO2 adsorption and separation behavior of adsorbents, especially the low-pressure performance under actual industrial conditions. Herein, we constructed a new flexible metal-organic framework [Zn(odip)0.5(bpe)0.5(CH3OH)]·0.5NMF·H2O (1) (H4odip = 5,5'-oxydiisophthalic acid, bpe = 1,2-bi(4-pyridyl)ethylene, and NMF = N-methylformamide) containing rich ether O adsorption sites in the channels that exhibits remarkable adsorption capacity for CO2 (118.7 cm3 g-1) due to the only gate-opening-type abrupt adsorption of CO2 at room temperature. Its low affinity for other competing gases enables it to deliver high selectivity for the adsorption of CO2 over C1 and C2 hydrocarbons. For equimolar mixtures of CO2-CH4 and CO2-C2H2, the selectivities are 376.0 and 13.2, respectively. Molecular simulations disclose more abundant adsorption sites for CO2 than hydrocarbons in 1. The breakthrough separation performances combined with remarkable stability and recyclability further verify that 1 is a promising adsorbent that can efficiently extract high-purity hydrocarbons through selective capture of CO2.

9.
Angew Chem Int Ed Engl ; 61(28): e202205427, 2022 Jul 11.
Artigo em Inglês | MEDLINE | ID: mdl-35499196

RESUMO

One-step C2 H4 purification from ternary C2 H6 /C2 H4 /C2 H2 mixtures by a single adsorbent is of great industrial significance, but few adsorbents achieve this separation. Herein, we report a robust metal-organic framework (MOF) that possesses methyl-decorated nonpolar pores and shows one-step C2 H4 purification (purity >99.9 %) from binary C2 H6 /C2 H4 mixtures and ternary C2 H6 /C2 H4 /C2 H2 mixtures. The methyl groups in pores provide a suitable pore environment to simultaneously enhance the adsorption capacity for C2 H2 and C2 H6 compared to C2 H4 . Simulations revealed the multiple interactions between C2 H6 or C2 H2 molecules and the pore wall, while the interactions with C2 H4 molecules are weak and also unfavorable due to the repulsion from methyl groups in pores. The MOF displays high C2 H6 and C2 H2 uptakes and benchmark C2 H6 /C2 H4 selectivity (2.2), surpassing all of the reported MOFs for one-step C2 H4 purification from ternary C2 H6 /C2 H4 /C2 H2 mixtures.

10.
ACS Appl Mater Interfaces ; 13(49): 58862-58870, 2021 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-34870404

RESUMO

Efficient separation of acetylene from a ternary acetylene-containing mixture is an important and vital task in petrochemical industry, which is difficult to achieve using a single material. Herein, a new Ca2+-based metal-organic framework (MOF) [Ca(dtztp)0.5(DMA)]·2H2O (1) was constructed using the N,O-donor ligand 2,5-di(2H-tetrazol-5-yl)terephthalic acid and the less-studied alkaline earth Ca2+ ions. The MOF shows a 3D honeycomb framework based on unique metal-carboxylate-azolate rod secondary building units. Owing to the presence of high-density organic hydrogen-bonding acceptors and open metal sites (OMSs), the activated MOF shows high adsorption capacity for C2H2 and selectivity for C2H2 over CO2, C2H4, C2H6, and CH4. Dynamic breakthrough experiments indicated the actual C2H2 separation potential of the MOF from binary (C2H2-C2H4 and C2H2-CO2) and ternary (C2H2-C2H4-CO2 and C2H2-C2H4-C2H6) mixtures. Simulations revealed that the synergistic interactions between the OMSs and N atoms in MOF and C2H2 molecules play an important role in the separation of C2H2.

11.
ACS Appl Mater Interfaces ; 13(3): 4102-4109, 2021 Jan 27.
Artigo em Inglês | MEDLINE | ID: mdl-33463146

RESUMO

Separation or purification is one of the difficult problems in the petrochemical industry. To help solve the difficulty of separation or purification for C2H2/CO2 and C2Hn/CH4 in the chemical industry, we synthesized a new metal-organic framework (MOF), [Ni(dpip)]·2.5DMF·H2O (1), by a bipyridyl-substituted isophthalic acid ligand. The MOF includes two types of one-dimensional (1D) tubular channels with different sizes and porous environments. The unique tubular channels lead to not only remarkable gas sorption capacity of C2H4, C2H2, and CO2, but also good selectivity for C2H2/CH4, C2H2/CH4, CO2/CH4, and C2H2/CO2, as demonstrated by single-component sorption isotherm results, ideal adsorbed solution theory calculations, and dynamic breakthrough curves. Grand canonical Monte Carlo (GCMC) simulation reveals preferential adsorption sites in the MOF for CO2, C2H2, and C2H4. The MOF also exhibits an obvious size-selective absorption effect on vapor molecules.

12.
Inorg Chem ; 59(20): 15302-15311, 2020 Oct 19.
Artigo em Inglês | MEDLINE | ID: mdl-33002353

RESUMO

The reaction of In3+ ions with 2,5-di(2H-tetrazol-5-yl) terephthalic acid (H4dtztp) affords a 3D indium-organic framework, [In(dtztp)0.5(OH)(H2O)]·H2O (1) with a (3,6)-connected net. 1 shows good thermal (300 °C) and chemical stabilities (various organic solvents and acidic/basic solutions) and excellent water tolerance (7 days at room temperature or in boiling water). The acetylene (C2H2) sorption behavior of 1 indicates significant separation selectivity over CH4, as confirmed by breakthrough experiments on the realistic gas mixtures. Meanwhile, the MOF with the Lewis and Brønsted acidic bifunctional catalytic sites catalyzes the CO2 conversion with different epoxides with high yields. The fluorescent properties reveal the efficient probing performance of 1 for nitrofurantoin (NFT) and metronidazole (MDZ) in water with a low detection limit (ppm).

13.
ACS Appl Mater Interfaces ; 12(37): 41785-41793, 2020 Sep 16.
Artigo em Inglês | MEDLINE | ID: mdl-32882139

RESUMO

To help address efficient separation of C2Hn light hydrocarbons and C2H2/CO2 in the chemical industry, the self-assembly via an azolate-carboxylate ligand and Co(II) ion gave rise to a new porous MOF material, [Co(btzip)(H2btzip)]·2DMF·2H2O (1) (H2btzip = 4,6-bis(triazol-1-yl)isophthalic acid). In the MOF, the pores are modified by rich uncoordinated triazolyl Lewis basic N atoms and acidic -COOH groups, which strengthen interactions with C2Hn hydrocarbons and CO2 molecules, leading to high adsorption amounts for C2H2, C2H4, C2H6, and CO2 and remarkable separation efficiency for C2Hn-CH4, CO2-CH4, and C2H2-CO2 mixtures, as confirmed by breakthrough experiments on the realistic gas mixtures. The MOF also reveals outstanding selective adsorption ability for benzene/toluene, methanol/1-propanol, methanol/2-propanol, and 2-propanol/1-propanol isomers. Molecular simulations disclose the different adsorption sites in the MOF for various adsorbates.

14.
Chemistry ; 26(69): 16402-16407, 2020 Dec 09.
Artigo em Inglês | MEDLINE | ID: mdl-32672357

RESUMO

To develop efficient adsorbent materials for storage and separation of C2 H2 , an unprecedented supercage MOF, [Me2 NH2 ]⋅[Zn3 (ALP)(TDC)2.5 ]⋅3.5DMF⋅2 H2 O (1) was constructed through medicinal molecule allopurinol (ALP) and S-containing 2,5-thiophenedicarboxylic acid (H2 TDC). 1 contains a novel linear trinuclear cluster that is composed by ALP and carboxylates and forms a final uncommon 5-connected yfy topological framework. The framework possesses three types of interlinked cages decorated by rich functional sites, and reveals not only high adsorption capacity for C2 H2 but also excellent selective separation for C2 H2 /CO2 and C2 H2 /CH4 at 298 K. Dynamic breakthrough experiments on C2 H2 /CO2 (1:1) mixture and C2 H2 /CH4 (1:1) mixture also demonstrated the potential of the material to separate C2 H2 from CO2 or CH4 mixtures. Molecular simulations were also studied to identify the different CO2 - and C2 H2 - binding sites in 1, such as carboxylate groups, S atoms and carbonyl groups.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...