Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
BMC Genomics ; 21(1): 450, 2020 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-32605538

RESUMO

BACKGROUND: The rice leaf folder Cnaphalocrocis medinalis Güenée is a serious insect pest of rice in Asia. This pest occurs in summer, and it is sensitive to high temperature. However, the larvae exhibit heat acclimation/adaptation. To understand the underlying mechanisms, we established a heat-acclimated strain via multigenerational selection at 39 °C. After heat shock at 41 °C for 1 h, the transcriptomes of the heat-acclimated (S-39) and unacclimated (S-27) larvae were sequenced, using the unacclimated larvae without exposure to 41 °C as the control. RESULTS: Five generations of selection at 39 °C led larvae to acclimate to this heat stress. Exposure to 41 °C induced 1160 differentially expressed genes (DEGs) between the heat-acclimated and unacclimated larvae. Both the heat-acclimated and unacclimated larvae responded to heat stress via upregulating genes related to sensory organ development and structural constituent of eye lens, whereas the unacclimated larvae also upregulated genes related to structural constituent of cuticle. Compared to unacclimated larvae, heat-acclimated larvae downregulated oxidoreductase activity-related genes when encountering heat shock. Both the acclimated and unacclimated larvae adjusted the longevity regulating, protein processing in endoplasmic reticulum, antigen processing and presentation, MAPK and estrogen signaling pathway to responsed to heat stress. Additionally, the unacclimated larvae also adjusted the spliceosome pathway, whereas the heat-acclimated larvae adjusted the biosynthesis of unsaturated fatty acids pathway when encountering heat stress. Although the heat-acclimated and unacclimated larvae upregulated expression of heat shock protein genes under heat stress including HSP70, HSP27 and CRYAB, their biosynthesis, metabolism and detoxification-related genes expressed differentially. CONCLUSIONS: The rice leaf folder larvae could acclimate to a high temperature via multigenerational heat selection. The heat-acclimated larvae induced more DEGs to response to heat shock than the unacclimated larvae. The changes in transcript level of genes were related to heat acclimation of larvae, especially these genes in sensory organ development, structural constituent of eye lens, and oxidoreductase activity. The DEGs between heat-acclimated and unacclimated larvae after heat shock were enriched in the biosynthesis and metabolism pathways. These results are helpful to understand the molecular mechanism underlying heat acclimation of insects.


Assuntos
Mariposas/crescimento & desenvolvimento , Termotolerância/genética , Transcriptoma , Animais , Perfilação da Expressão Gênica , Larva/metabolismo , Mariposas/enzimologia , Mariposas/genética , Mariposas/metabolismo , Oxirredutases/metabolismo
2.
J Hazard Mater ; 381: 120935, 2020 01 05.
Artigo em Inglês | MEDLINE | ID: mdl-31401458

RESUMO

Manganese slag is a hazardous waste, which lacks proper treatment. For the first time, an effective catalyst for selective catalytic reduction of nitric oxide was synthesized from manganese slag by a sol-gel method. The obtained catalyst had an excellent low-temperature activity and high hydrothermal stability. It removed 46.3% of nitric oxide (990 ppm) at a temperature as low as 100 °C; its removal increased to 100% at 220 °C, which lasted for more than 2000 min. Moreover, hydrothermal treatment at 400 °C showed little influence on its activity. Even after hydrothermal treatment at 900 °C, the catalyst still removed 39.7% of NO at 220 °C, 22.7% higher than another catalyst synthesized from pure reagents. The hydrothermal stability was attributed to an amorphous layer of MnSixOy. This layer covered the catalyst surface, protected active metal species, pore size and pore volume from steam attacking. Manganese slag thus realized the high-value-added utilization by synthesizing a catalyst with the high hydrothermal stability.

3.
J Therm Biol ; 81: 103-109, 2019 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-30975406

RESUMO

Physiological response and acclimation to thermal stress is a key strategy of insects to cope with changing climate. The underlying mechanism of heat acclimation in insects is still unclear. Here, the heat selection and transcript level response in the larvae of the rice leaf folder Cnaphalocrocis medinalis Güenée, a serious pest of rice in summer, were studied. The survival and fecundity of larvae during multigenerational heat selection at 39 °C were examined, and heat tolerance and mRNA expression of heat shock protein 70 (Hsp70) and 90 (Hsp90) were examined under heat stress. The results showed that survival and fecundity of larvae increased notably and then kept constant after two or three generations of heat selection. Heat selection improved thermal tolerance of larvae. The Hsp70 mRNA expression of the 3rd-instar larvae increased in all five generations of heat selection, but Hsp90 increased only in the first two generations. The response of Hsp70 to 39 °C heat treatment in the larvae kept at 27 °C was different from the larvae exposed to the conditioning heat treatments, but the response of Hsp 90 was similar. Moreover, the Hsp70 and Hsp90 mRNA expression levels were significantly higher in the heat-acclimated larvae than that in the unacclimated larvae at a comparable duration of exposure to 37 and 41 °C. Selection at a high temperature across multiple generations led larvae to heat acclimation, and Hsp70 and Hsp90 were involved in this acclimation process.


Assuntos
Proteínas de Choque Térmico HSP70/metabolismo , Proteínas de Choque Térmico HSP90/metabolismo , Proteínas de Insetos/metabolismo , Larva/metabolismo , Mariposas/metabolismo , Termotolerância , Animais , Feminino , Fertilidade , Aptidão Genética , Temperatura Alta , RNA Mensageiro/metabolismo , Seleção Genética
4.
J Environ Manage ; 239: 90-95, 2019 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-30889522

RESUMO

Manganese slag is a solid waste produced by the steel industry and usually lacks a proper recycling. In this paper, the manganese slag was used to synthesize a catalyst via microwave assistant method and applied in selective catalytic reduction of nitric oxide. As a result, the catalyst exhibited an excellent low-temperature activity. It removed 78.31% of nitric oxide at 100 °C, 44.44% higher than that of a slag-derived catalyst synthesized by ammonia impregnation, and 63.18% higher than that of a commercial catalyst. Even after a hydrothermal treatment, the catalyst still showed a removal of 69.26% at 150 °C. After a detailed characterization, the low-temperature activity was attributed to an increased amount of oxygen vacancies, which were generated during the microwave synthesis. The generated oxygen vacancies provided adsorption sites for chemisorbed oxygens, which then promoted the electron transfer for reduction of nitric oxide. The main result of this work will help to develop a low-cost catalyst and obtain a high-value-added utilization of manganese slag at the same time.


Assuntos
Manganês , Óxido Nítrico , Amônia , Catálise , Oxigênio
5.
J Econ Entomol ; 112(1): 149-155, 2019 02 12.
Artigo em Inglês | MEDLINE | ID: mdl-30321386

RESUMO

Behavioral thermoregulation is a key strategy for insects to cope with heat stress. The rice leaf folder Cnaphalocrocis medinalis Guenée (Lepidoptera: Pyralidae) larvae usually fold one leaf to construct a leaf shelter. The larvae are vulnerable to heat stress, and the temperature in summer is often beyond the optimal range of them. Shelters confer protection against environmental stress but unclear whether larvae will alter shelter-building behavior when encountering heat stress. We observed the shelter-building behavior of larvae during and after heat shock, and then examined the shape and structure of shelters. Larvae spent more time in selecting a site and building a shelter during and after heat shock than at the optimal temperature. More than 70% of larvae folded two or three leaves to build a shelter during and after heat shock, but more than 60% of larvae only folded one leaf at the optimal temperature. Larvae built more single-leaf longitudinal shelters at the optimal temperature, but they built more multileaf overlapping shelters during and after heat stress. Larvae constructed a short leaf shelter using a small amount of silk binds when they were exposed to 40°C for 4 h. The rice leaf folder larvae can alter their shelter-building behavior and shelter structure in response to heat stress.


Assuntos
Comportamento Animal , Mariposas , Estresse Fisiológico , Animais , Temperatura Alta , Larva , Folhas de Planta
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...