Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Phytother Res ; 37(8): 3296-3308, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-36883794

RESUMO

Parkinson's disease (PD) is a chronic neurodegenerative disease characterized by selective loss of dopaminergic neurons in the substantia nigra pars compacta (SNpc) and the striatum, leading to dopamine (DA) deficiency in the striatum and typical motor symptoms. A small molecule as a dietary supplement for PD would be ideal for practical reasons. Hordenine (HOR) is a phenolic phytochemical marketed as a dietary supplement found in cereals and germinated barley, as well as in beer, a widely consumed beverage. This study was aimed to identify HOR as a dopamine D2 receptor (DRD2) agonist in living cells, and investigate the alleviative effect and mechanism of HOR on PD-like motor deficits in mice and nematodes. Our results firstly showed that HOR is an agonist of DRD2, but not DRD1, in living cells. Moreover, HOR could improve the locomotor dysfunction, gait, and postural imbalance in MPTP- or 6-OHDA-induced mice or Caenorhabditis elegans, and prevent α-synuclein accumulation via the DRD2 pathway in C. elegans. Our results suggested that HOR could activate DRD2 to attenuate the PD-like motor deficits, and provide scientific evidence for the safety and reliability of HOR as a dietary supplement.


Assuntos
Doenças Neurodegenerativas , Doença de Parkinson , Camundongos , Animais , Dopamina/metabolismo , Caenorhabditis elegans/metabolismo , Reprodutibilidade dos Testes , Doença de Parkinson/tratamento farmacológico , Receptores de Dopamina D2/agonistas , Receptores de Dopamina D2/metabolismo , Neurônios Dopaminérgicos , Camundongos Endogâmicos C57BL , Modelos Animais de Doenças
2.
J Asian Nat Prod Res ; 25(5): 484-496, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-35866240

RESUMO

Metabolic disorder is highly related to obesity, insulin resistance, hypertension, and hyperlipidemia. The present study found that astragaloside IV (ASI) attenuated metabolic disorder related symptoms and modulated hepatic lipid metabolism associated gene mRNA expression in db/db mice. ASI inhibited rosiglitazone-induced adipocyte differentiation of 3T3-L1 cells, and lipid accumulation in palmitic acid (PA)-induced HepG2 cells with down-regulated mRNA expression of lipogenesis-related genes. In addition, it was predicted to bind to the ligand binding domain (LBD) of PPARγ and inhibit its transactivity. Collectively, our study suggested that ASI improves lipid metabolism in obese mice probably through suppressing PPARγ activity.


Assuntos
Obesidade , PPAR gama , Camundongos , Animais , PPAR gama/genética , PPAR gama/metabolismo , Camundongos Obesos , Obesidade/tratamento farmacológico , Obesidade/metabolismo , RNA Mensageiro , Células 3T3-L1 , Camundongos Endogâmicos C57BL
3.
Front Immunol ; 13: 918476, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36032109

RESUMO

Background: Deep venous thrombosis (DVT) highly occurs in patients with severe COVID-19 and probably accounted for their high mortality. DVT formation is a time-dependent inflammatory process in which NETosis plays an important role. However, whether ginsenoside Rg5 from species of Panax genus could alleviate DVT and its underlying mechanism has not been elucidated. Methods: The interaction between Rg5 and P2RY12 was studied by molecular docking, molecular dynamics, surface plasmon resonance (SPR), and molecular biology assays. The preventive effect of Rg5 on DVT was evaluated in inferior vena cava stasis-induced mice, and immunocytochemistry, Western blot, and calcium flux assay were performed in neutrophils from bone marrow to explore the mechanism of Rg5 in NETosis via P2RY12. Results: Rg5 allosterically interacted with P2RY12, formed stable complex, and antagonized its activity via residue E188 and R265. Rg5 ameliorated the formation of thrombus in DVT mice; accompanied by decreased release of Interleukin (IL)-6, IL-1ß, and tumor necrosis factor-α in plasma; and suppressed neutrophil infiltration and neutrophil extracellular trap (NET) release. In lipopolysaccharide- and platelet-activating factor-induced neutrophils, Rg5 reduced inflammatory responses via inhibiting the activation of ERK/NF-κB signaling pathway while decreasing cellular Ca2+ concentration, thus reducing the activity and expression of peptidyl arginine deiminase 4 to prevent NETosis. The inhibitory effect on neutrophil activity was dependent on P2RY12. Conclusions: Rg5 could attenuate experimental DVT by counteracting NETosis and inflammatory response in neutrophils via P2RY12, which may pave the road for its clinical application in the prevention of DVT-related disorders.


Assuntos
COVID-19 , Trombose Venosa , Animais , Ginsenosídeos , Camundongos , Simulação de Acoplamento Molecular , Neutrófilos
4.
J Ethnopharmacol ; 298: 115592, 2022 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-35931304

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: In the long history of traditional Chinese medicine, Panax notoginseng has been used as a key herb for the treatment of blood diseases. Brain microvessels support adequate blood circulation to maintain normal physiological function, therefore, brain microcirculation disorder is an important therapeutic target for various brain diseases. However, the role of Xueshuantong (XST) injection composed of saponins from P. Notoginseng (PNS) in the amelioration of cerebral microcirculation disorder is unclear. AIMS OF THE STUDY: Cerebral microcirculation disorder and inflammation play a vital role in stroke. Capillary endothelial cells and adjacent tight junctions are fundamental to the structure and function of cerebrovascule. XST injection has been used clinically in the treatment of stroke, but no studies have reported its indication in cerebral microcirculation disorder. This study is to explore the action and mechanism of XST injection in the alleviation of cerebral microcirculation disorder in middle cerebral artery occlusion/reperfusion (MCAO/R) rats. MATERIALS AND METHODS: MCAO/R rats and LPS-induced bEnd.3 cells were employed for the investigation of effect and mechanism of XST injection. Brain damages were evaluated by neurobehavioral assessment, 2, 3, 5-triphenyltetrazolium chloride (TTC) staining, hematoxylin and eosin staining (H&E), and Nissl staining. Morphology and density changes of cerebral microvessels were monitored by immunohistochemistry. Cell permeability was detected by measurement of trans-endothelial electrical resistance (TEER) and sodium fluorescein (NaF) leakage. The mRNA and protein expressions of inflammatory cytokines, tight junction proteins, adhesion molecules, Janus kinase 2 (JAK2), signal transducer and activator of transcription-3 (STAT3), inhibitor of NF-κB (IκB), nuclear factor-κB (NF-κB) and c-jun N-terminal kinase (JNK) in brain microvessels and lipopolysaccharide (LPS)-induced bEnd.3 cells were measured by real-time PCR and Western blot, respectively. RESULTS: XST injection at 48 mg/kg significantly improved the neurological damage, inflammatory infiltration, and microvessel morphology, and increased microvessel density in brain of MCAO/R rats. The endothelial permeability was significantly mitigated by XST injection in LPS-induced bEnd.3 cells. Meanwhile, the tight junction proteins such as zona occludens 1 (ZO-1) and occludin were elevated remarkably in brain microvessel of MCAO/R rats and LPS-induced bEnd.3 cells. Moreover, the expression of inflammatory mediators including interleukin (IL)-1ß, IL-6, tumor necrosis factor (TNF)-α, inducible nitric oxide synthase (iNOS), cycloocygenases 2 (COX-2), vascular cellular adhesion molecule-1 (VCAM-1), matrix metalloproteinase (MMP)-2, and MMP-9 were inhibited by XST injection. In addition, XST injection suppressed the phosphorylation of JAK2, STAT3, IκB, NF-κB and JNK, which could be abolished by anisomycin, the JNK agonist. CONCLUSION: XST injection improved cerebral microvescular structure damage and dysfunction in MCAO/R rats through inhibiting inflammation activated by JNK mediated JAK2/STAT3 and NF-κB signaling pathways. The novel findings may provide theoretical basis for the clinical application in the treatment of cerebral microcirculation disorder.


Assuntos
NF-kappa B , Acidente Vascular Cerebral , Animais , Medicamentos de Ervas Chinesas , Células Endoteliais/metabolismo , Infarto da Artéria Cerebral Média/tratamento farmacológico , Inflamação/metabolismo , Janus Quinase 2/metabolismo , Lipopolissacarídeos/farmacologia , Camundongos , Microcirculação , NF-kappa B/metabolismo , Ratos , Reperfusão , Fator de Transcrição STAT3 , Transdução de Sinais , Proteínas de Junções Íntimas
5.
J Psychopharmacol ; 36(7): 849-859, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35475391

RESUMO

BACKGROUND: Hyodeoxycholic acid (HDCA) is a natural secondary bile acid with enormous pharmacological effects, such as modulating inflammation in neuron. However, whether HDCA could suppress microglial inflammation has not been elucidated yet. AIMS: To determine the anti-microglial inflammatory effect of HDCA in lipopolysaccharide (LPS) models and its mechanisms. METHODS: The effect of HDCA was evaluated in LPS-stimulated BV2 microglial cells in vitro and the cortex of LPS-treated mice in vivo. Immunohistochemistry and immunofluorescence were used to visualize the localization of nuclear factor kappa light-chain enhancer of activated B cells (NF-κB) and ionized calcium-binding adaptor protein-1 (Iba-1), respectively. The mRNA expression of inflammatory cytokines was measured by RT-qPCR. The protein expression of inducible nitric oxide synthase (iNOS), cyclooxygenase-2 (COX-2), takeda G-coupled protein receptor 5 (TGR5), and the phosphorylation of protein kinase B (AKT), NF-κB, and inhibitor of NF-κB protein α (IκBα) was examined by Western blot. RESULTS: HDCA inhibited the inflammatory responses in LPS-treated BV2 cells and in the cortex of LPS-treated mice, evidenced by decreased production of inflammatory mediators such as iNOS, COX-2, tumor necrosis factor (TNF-α), interleukin (IL)-6, and IL-1ß. Further study demonstrated that HDCA repressed the phosphorylation, nuclear translocation, and transcriptional activity of NF-κB and inhibited the activation of AKT in BV-2 cells induced by LPS. Meanwhile, addition of TGR5 inhibitor, triamterene, abolished the effects of HDCA on TGR5, AKT, and NF-κB. CONCLUSION: The present study demonstrated that HDCA prevents LPS-induced microglial inflammation in vitro and in vivo, the action of which is via regulating TGR5/AKT/NF-κB signaling pathway.


Assuntos
Ácido Desoxicólico , NF-kappa B , Proteínas Proto-Oncogênicas c-akt , Receptores Acoplados a Proteínas G , Transdução de Sinais , Animais , Ciclo-Oxigenase 2/metabolismo , Ácido Desoxicólico/farmacologia , Inflamação/metabolismo , Lipopolissacarídeos , Camundongos , Microglia , NF-kappa B/metabolismo , Óxido Nítrico/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Receptores Acoplados a Proteínas G/metabolismo , Fator de Necrose Tumoral alfa/metabolismo
6.
J Ethnopharmacol ; 291: 115160, 2022 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-35245629

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: Artemisia annua L. (A. annua) is a traditional Chinese medicine that has been used since ancient times to treat malaria, eczema, dermatomycosis, jaundice, and boils. Modern pharmacological studies show that it has immunosuppressive and anti-inflammatory effects. However, the mechanism of A. annua in the treatment of atopic dermatitis (AD) remains unclear. AIM OF THE STUDY: This study was aimed to investigate the effect of A. annua water extract (AWE) on 2,4-dinitrochlorobenzene (DNCB)-induced AD mouse model and tried to explore its possible underlying mechanisms. MATERIALS AND METHODS: AD was induced in BALB/c mice by the topical repeated application of DNCB. Oral drug intervention of AWE and dexamethasone (DEX, positive control) began from the 7th day and continued for 13 consecutive days. The clinical skin score, ear thickness and the weight of ear and spleen were assessed. The ear tissue were stained with toluidine blue and hematoxylin and eosin (H&E) to detect inflammatory cell infiltration. IgE, terleukin (IL)-4 and IL-13 levels in the serum and IgE level in splenocytes were quantified by enzyme-linked immunosorbent assay (ELISA). The mRNA expression levels of IL-4, IL-6, IL-13, IL-17, tumor necrosis factor (TNF)-α and thymic stromal lymphopoietin (TSLP) were measured by quantitative real time polymerase chain reaction. The phosphorylation levels of mitogen-activated protein kinases (MAPKs)-p38 and nuclear factor (NF)-κB in ear tissue were detected by Western blot. RESULTS: Results demonstrated that AWE treatment significantly attenuated the AD-like symptoms in DNCB-induced BALB/c mice, including the skin dermatitis severity and ear edema. Further study disclosed that AWE treatment suppressed the expressions of IgE, IL-4, IL-6, IL-13, IL-17, TNF-α and TSLP at mRNA and protein levels. Moreover, AWE showed inhibitory effect on the phosphorylation of p38 MAPK and NFκB in ear tissues of AD mice. CONCLUSIONS: Collectively, our results suggested that AWE suppressed DNCB-induced AD in mice probably by restraining Th2 type inflammatory response. These findings might pave the road for the potential clinical application of AWE for AD treatment.


Assuntos
Artemisia annua , Dermatite Atópica , Eczema , Animais , Citocinas/metabolismo , Dermatite Atópica/induzido quimicamente , Dermatite Atópica/tratamento farmacológico , Dermatite Atópica/metabolismo , Dinitroclorobenzeno/toxicidade , Eczema/metabolismo , Eczema/patologia , Camundongos , Camundongos Endogâmicos BALB C , Pele/patologia , Células Th2/metabolismo , Água/farmacologia
8.
J Ethnopharmacol ; 289: 115063, 2022 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-35149130

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: According to the Tang Dynasty classics Dietetic Material Medica and the Ming Dynasty classics Compendium of Materia Medica records, bear bile powder (BBP) has been used to treat a variety of diseases, such as febrile seizures, the pathogenesis of which is associated to neuroinflammation. However, the mechanism of BBP on alleviating neuroinflammation remains unclear. AIMS OF THE STUDY: Microglia can be activated by peripheral lipopolysaccharide (LPS) and play an important role in the pathogenesis of neuroinflammation. The purpose of this study is to investigate the effects and mechanism of BBP in inhibiting LPS-induced microglia inflammation in vitro and in vivo. MATERIALS AND METHODS: The anti-microglia inflammatory effects and mechanism of BBP were assessed in LPS-treated BV2 microglial cells and in LPS-treated mice. The mRNA expression levels of the inflammatory factor and the protein expressions of cyclooxygenase-2 (COX2), inducible nitric oxide synthase (iNOS), takeda G-protein coupled receptor 5 (TGR5), nuclear factor-κB (NF-κB), inhibitor of NF-κB (IκBɑ), protein kinase B (AKT) in BV2 cells, mouse hippocampus and cortex were detected. The NF-κB transcription activity and NF-κB nuclear translocation were observed. RESULTS: Our findings showed that BBP reduces branched process retraction and NO in LPS-treated BV2 cells, inhibits the protein expression of ionized calcium binding adaptor molecule 1 in the hippocampus of LPS-treated mice. Moreover, we observed that BBP decreases tumor necrosis factor α, interleukin (IL)-6 and IL-1ß mRNA levels, deceases iNOS and COX-2 protein levels, increases TGR5 protein levels, suppresses the phosphorylation of AKT, NF-κB and IκBɑ protein in microglia both in vitro and in vivo. Further, we found that triamterene, the inhibitor of TGR5, abolishes the effects of BBP in LPS- treated BV2 cells. CONCLUSION: BBP inhibits LPS-induced microglia activation, and the mechanism of its action is partly through TGR5/AKT/NF-κB signaling pathway.


Assuntos
Bile/química , Produtos Biológicos/farmacologia , Medicina Tradicional Chinesa , Doenças Neuroinflamatórias/tratamento farmacológico , Animais , Linhagem Celular , Lipopolissacarídeos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Microglia/efeitos dos fármacos , Microglia/metabolismo , NF-kappa B/metabolismo , Pós , Proteínas Proto-Oncogênicas c-akt/metabolismo , Receptores Acoplados a Proteínas G/metabolismo , Transdução de Sinais/efeitos dos fármacos , Ursidae
9.
J Nutr ; 150(7): 1731-1737, 2020 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-32386222

RESUMO

BACKGROUND: Parkinson's disease (PD) is a common neurodegenerative disorder. Cinnamon procyanidin oligomers (CPOs) are flavonoids with many claimed health benefits. OBJECTIVE: This study aimed to elucidate the neuroprotection of A-type CPOs (CPO-A) and the underlying mechanisms in cultured cell and animal models of PD. METHODS: Thirty male mice (C57BL/6, 9-wk old) were assigned to 3 groups (n = 10), and were given daily gavage of saline [control and 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) groups] or CPO-A (150 mg/kg, CPO-A group) during days 1-15 and daily intraperitoneal injections of saline (control group) or MPTP (20 mg/kg; MPTP and MPTP + CPO-A groups) during days 11-15. After the motor behavior test, all mice were killed on day 16 to collect the substantia nigra (SN) for assaying the neuroprotective effects of CPO-A. SH-SY5Y cells were treated with 12.5 µM CPO-A for 2 h or 3 activators of stress-related kinases (5-25 µM) for 12-48 h followed by 1 mM 1-methyl-4-phenylpyridinium (MPP+) for assays of viability, morphology, and stress status. RESULTS: Compared with the control, the MPTP treatment decreased (P < 0.05) locomotor activity by 21%, and tyrosine hydroxylase (TH) positive neurons by 55% and Th mRNA concentration by 51% in the SN. The CPO-A treatment attenuated or restored (P < 0.05) these changes and inhibited (P < 0.05) the MPTP-induced activation of P38 mitogen-activated protein kinase (P38MAPK) and P53, along with the downstream expression of BCL-2 associated X protein (BAX) in the SN. In SH-SY5Y cells, the CPO-A treatment blocked (P < 0.01) the MPP+-induced accumulation of intracellular reactive oxygen species and neurotoxicity. However, this protection was abolished (P < 0.05) by activators of the P38MAPK/P53/BAX pathway. CONCLUSION: CPO-A protected against MPP+-induced cytotoxicity in SH-SY5Y cells and MPTP-induced neurotoxicity in mice by regulating the P38MAPK/P53/BAX signaling. Our findings reveal a novel role and mechanism of a food flavonoid CPO-A in preventing neurodegeneration.


Assuntos
Biflavonoides/química , Catequina/química , Cinnamomum zeylanicum/química , Intoxicação por MPTP , Morfolinos/química , Morfolinos/farmacologia , Proantocianidinas/química , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo , Animais , Linhagem Celular Tumoral , Sobrevivência Celular , Regulação da Expressão Gênica/efeitos dos fármacos , Locomoção , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Espécies Reativas de Oxigênio , Proteína Supressora de Tumor p53/genética , Proteína Supressora de Tumor p53/metabolismo , Proteína X Associada a bcl-2/genética , Proteína X Associada a bcl-2/metabolismo , Proteínas Quinases p38 Ativadas por Mitógeno/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...