Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Zhongguo Zhong Yao Za Zhi ; 49(13): 3657-3667, 2024 Jul.
Artigo em Chinês | MEDLINE | ID: mdl-39041138

RESUMO

This study aims to predict the possible targets and related signaling pathways of Modified Huoluo Xiaoling Pills against colorectal cancer(CRC) by both network pharmacology and molecular docking and verify the mechanism of action by experiments. TCMSP was used to obtain the active ingredients and targets of Modified Huoluo Xiaoling Pills, and GeneCards, DrugBank, OMIM, and TTD were employed to acquire CRC-related targets. Cytoscape software was utilized to construct the drug-active ingredient-target network, and the STRING database was applied to establish the protein-protein interaction(PPI) network. DAVID platform was adopted to investigate the targets in terms of GO function and KEGG pathway enrichment analysis. Molecular docking was performed in AutoDock Vina. HCT 116 cells were intervened by different concentrations of Modified Huoluo Xiaoling Pills-containing serum, and CCK-8 was used to detect the proliferation inhibition of HCT 116 cells in each group. Transwell was employed to show the invasive abi-lity of HCT 116 cells, and Western blot was taken to reveal the expression levels of ß-catenin, cyclinD1, c-Myc, as well as epithelial-mesenchymal transition(EMT) marker proteins E-cadherin, N-cadherin, vimentin, MMP2, MMP7, MMP9, and TWIST in HCT 116 cells. The network pharmacological analysis yielded 242 active ingredients of Modified Huoluo Xiaoling Pills, 1 844 CRC targets, and 127 overlapping targets of CRC and Modified Huoluo Xiaoling Pills, and the signaling pathways related to CRC involved PI3K-Akt, TNF, HIF-1, IL-17, Wnt, etc. Molecular docking showed that the key active ingredients had a stable binding conformation with the core proteins. CCK-8 indicated that Modified Huoluo Xiaoling Pills significantly inhibited the proliferation of HCT 116 cells. Transwell assay showed that with increasing concentration of Modified Huoluo Xiaoling Pills containing serum, the invasive ability of HCT 116 cells was more obviously inhibited. The expression of ß-catenin, cyclinD1, c-Myc, N-cadherin, vimentin, MMP2, MMP7, MMP9, and TWIST proteins were suppressed, and the expression of E-cadherin was improved by the intervention of drug-containing serum. Thus, it can be seen that Modified Huoluo Xiaoling Pills restrains the proliferation, invasion, and metastasis of CRC cells through multiple components, multiple targets, and multiple pathways, and the mechanism of action may be related to the inhibition of the activation of the Wnt/ß-catenin signaling pathway, thereby affecting the occurrence of EMT.


Assuntos
Proliferação de Células , Neoplasias Colorretais , Medicamentos de Ervas Chinesas , Simulação de Acoplamento Molecular , Farmacologia em Rede , Humanos , Neoplasias Colorretais/tratamento farmacológico , Neoplasias Colorretais/metabolismo , Medicamentos de Ervas Chinesas/farmacologia , Medicamentos de Ervas Chinesas/química , Proliferação de Células/efeitos dos fármacos , Células HCT116 , Transição Epitelial-Mesenquimal/efeitos dos fármacos , Mapas de Interação de Proteínas/efeitos dos fármacos , Transdução de Sinais/efeitos dos fármacos
2.
Chin J Integr Med ; 16(1): 61-5, 2010 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-20131038

RESUMO

OBJECTIVE: To study the effect of Xinjining extract (, XJN) on inward rectifier potassium current (I(K1)) in ventricular myocyte (VMC) of guinea pigs and its anti-arrhythmic mechanism on ion channel level. METHODS: Single VMC was enzymatically isolated by zymolisis, and whole-cell patch clamp recording technique was used to record the I(k1) in VMC irrigated with XJN of different concentrations (1.25, 2.50, 5.00 g/L; six samples for each). The stable current and conductance of the inward component of I(K1) as well as the outward component of peak I(K1) and conductance of it accordingly was recorded when the test voltage was set on -110 mV. RESULTS: The suppressive rate of XJN on the inward component of I(K1) was 9.54% + or - 5.81%, 34.82% + or - 15.03%, and 59.52% + or - 25.58% with a concentration of 1.25, 2.50, and 5.00 g/L, respectively, and that for the outward component of peak I(K1) was 23.94% + or - 7.45%, 52.98% + or - 19.62%, and 71.42% + or - 23.01%, respectively (all P<0.05). Moreover, different concentrations of XJN also showed effects for reducing I(K1) conductance. CONCLUSION: XJN has inhibitory effect on I(K1) in guinea pig's VMC, and that of the same concentration shows stronger inhibition on outward component than on inward component, which may be one of the mechanisms of its anti-arrhythmic effect.


Assuntos
Medicamentos de Ervas Chinesas/farmacologia , Potenciais da Membrana/efeitos dos fármacos , Miócitos Cardíacos/efeitos dos fármacos , Canais de Potássio Corretores do Fluxo de Internalização/efeitos dos fármacos , Animais , Relação Dose-Resposta a Droga , Avaliação Pré-Clínica de Medicamentos , Eletrofisiologia , Cobaias , Ventrículos do Coração/efeitos dos fármacos , Ventrículos do Coração/metabolismo , Contração Miocárdica/efeitos dos fármacos , Miócitos Cardíacos/metabolismo , Miócitos Cardíacos/fisiologia , Canais de Potássio Corretores do Fluxo de Internalização/metabolismo , Canais de Potássio Corretores do Fluxo de Internalização/fisiologia , Função Ventricular/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...