Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Comput Math Methods Med ; 2022: 2415129, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35035517

RESUMO

It has been demonstrated that the inflammatory response influences cancer development and can be used as a prognostic biomarker in various tumors. However, the relevance of genes associated with inflammatory responses in hepatocellular carcinoma (HCC) remains unknown. The Cancer Genome Atlas (TCGA) database was analyzed using weighted gene coexpression network analysis (WGCNA) and differential analysis to discover essential inflammatory response-related genes (IFRGs). Cox regression studies, both univariate and multivariate, were employed to develop a prognostic IFRGs signature. Additionally, Gene Set Enrichment Analysis (GSEA) was used to deduce the biological function of the IFRGs signature. Finally, we estimated immune cell infiltration using a single sample GSEA (ssGSEA) and x-cell. Our results revealed that, among the major HCC IFRGs, two (DNASE1L3 and KLKB1) were employed to create a predictive IFRG signature. The IFRG signature could correctly predict overall survival (O.S) as per Kaplan-Meier time-dependent roc curves analysis. It was also linked to pathological tumor stage and T stage and might be used as a prognostic predictor in HCC. GSEA analysis concluded that the IFRG signature might influence the immune response in HCC. Immunological cell infiltration and immune checkpoint molecule expression differed in the high-risk and low-risk groups. As a result of our findings, DNASILE may play a role in the tumor microenvironment. However, more research is necessary to confirm the role of DNASE1L3 and KLKB1.


Assuntos
Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/imunologia , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/imunologia , Biomarcadores Tumorais/genética , Biomarcadores Tumorais/imunologia , Carcinoma Hepatocelular/patologia , Biologia Computacional , Regulação Neoplásica da Expressão Gênica , Redes Reguladoras de Genes , Humanos , Inflamação/genética , Inflamação/imunologia , Inflamação/patologia , Estimativa de Kaplan-Meier , Neoplasias Hepáticas/patologia , Linfócitos do Interstício Tumoral/imunologia , Linfócitos do Interstício Tumoral/patologia , Prognóstico , Modelos de Riscos Proporcionais , Microambiente Tumoral/genética , Microambiente Tumoral/imunologia
2.
J Environ Sci (China) ; 17(4): 620-2, 2005.
Artigo em Inglês | MEDLINE | ID: mdl-16158591

RESUMO

Since the ability to degrade lignin with one kind of white-rot fungi or bacteria was very limited, superior mixed flora's ability to degrade lignin was investigated by an orthogonal experiment in this paper. The results showed that superior mixed flora reinforced the ability to degrade lignin, the degradation rates of both sample 9 and 10 were beyond 80% on the day 9. The cooperation between lignin peroxidase (LiP), Mn-dependent peroxidase (MnP) and laccase (Lac) for lignin degradation was also studied. By examining the activities of three enzymes produced by superior mixed flora, it was found that Lac was a key enzyme in the process of biological degradation of lignin but Lip was not; the enzyme activity ratios of Lac/MnP and Lac/LiP were significantly correlative with the degradation rate of lignin at the 0.01 level; and the ratio of MnP/LiP was an important factor affecting the degradation rate of lignin.


Assuntos
Fungos/enzimologia , Lacase/metabolismo , Lignina/metabolismo , Peroxidases/metabolismo , Hidrólise
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...