Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Int J Biol Macromol ; 270(Pt 1): 132276, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38734352

RESUMO

The reuse and development of natural waste resources is a hotspots and challenges in the research of new fiber materials and the resolution of environmental concern globally. Herein, this study aimed to develop a simple and direct manual extraction process to extract Musa core fibers (MCFs) for rapid water conduction and evaporation. Through simple processes such as ring cutting and stretching, this green and non-destructive inside-out extraction strategy enabled Musa fibers to be naturally and harmlessly degummed from natural Musa stems, with good maintenance of the fiber structure and highly helical morphology. The extracted fibers are composed of regularly and closely arranged cellulose nanofibrils in the shape of ribbon spirally arranged multi-filaments, and the single filament is about 2.65 µm. The high-purity fibers exhibit ultra-high tensile strength under a non-destructive extraction process, and the ultimate tensile strength in dry state is as high as 742.95 MPa. The tensile strength is affected by the number of fiber bundles, which shows that tensile strength and tensile modulus is higher than those of vascular bundle fibers in dry or wet condition. In addition, the MCFs membrane indicates good water conductivity, with a water absorption height of 50 mm for the sample in only 60 s. Moreover, the water evaporation rate of MCFs reaches 1.37 kg m-2 h-1 in 30 min, which shows that MCFs have excellent water conductivity and evaporation rate compared with ordinary cotton fibers. These results indicate that MCFs have great potential in replacing the use of chemical methods to extract fibers from vascular bundles, providing an effective way to achieve sustainability in quick-drying applications, as well as in the sustainable development of natural waste resources.


Assuntos
Musa , Resistência à Tração , Água , Água/química , Musa/química , Celulose/química , Nanofibras/química
2.
RSC Adv ; 12(42): 27616-27624, 2022 Sep 22.
Artigo em Inglês | MEDLINE | ID: mdl-36276056

RESUMO

Fabricating dye adsorbents with efficient adsorption properties is of great significance in the treatment of printing and dyeing wastewater. Herein, composite materials of polydopamine decorated cellulose fibrous nonwovens (PDA@CF NWs) were fabricated by constructing a PDA functional layer on the surface of cellulose fibers via in situ polymerization. In addition, a three-dimensional adsorbent of 3D PDA@CF NWs with good hydrophilicity, structural stability, and compression resistance could be obtained using a facilely laminating and traditional loop bonding reinforcing technique. Attributed to the efficient and uniform loading of an active PDA functional layer, the resulting PDA@CF NWs exhibited a relatively large adsorption capacity of around 91 mg g-1 towards the template dye of methylene blue within a fast equilibrium time of 2 h, which was superior to most of the fibrous adsorbents. In addition, the treatment column of 3D PDA@CF NWs exhibited a breakthrough capacity of 40.9 mg g-1, reaching nearly 50% of the static saturated dye-binding capacity. More importantly, the 3D PDA@CF NWs column could effectively and continuously separate the mixture of different dyes under gravity, highlighting an excellent practical performance. Thus, the PDA@CF NWs are expected to provide a promising candidate for environment-friendly, large-scale and efficient treatment of industrial printing and dyeing wastewater.

3.
ACS Omega ; 5(2): 986-994, 2020 Jan 21.
Artigo em Inglês | MEDLINE | ID: mdl-31984254

RESUMO

Bioinspired superhydrophobic surfaces have attracted great interest due to their special functions and wide applications. However, it is still a big challenge to construct a durable superhydrophobic coating for large-scale applications due to its easy destruction by the mechanochemical attack. In this mini-review, we present the state-of-the-art developments in the rational design of mechanochemical durable and self-healing superhydrophobic surfaces. First, the mechanically durable superhydrophobic surfaces are constructed to endure mechanical damage by adjusting the surface morphology and increasing the binding force between the substrates and the modified materials. Second, chemical damages also have been taken into consideration to develop chemically robust superhydrophobic surfaces, such as chemical etching, ultraviolet (UV)-light irradiation, and bioerosion, etc. Third, endowing superhydrophobic coatings with self-healing function can effectively improve the durability and prolong the lifespan of the coatings by releasing low-surface-energy agents or regenerating topographic structures. Finally, the challenges and future perspectives in developing super durable bioinspired superhydrophobic surfaces by structure design and chemistry control are discussed. The innovative points provided in this mini-review will provide deep fundamental insight for prolonging the lifetime of the superhydrophobic surfaces and enable their practical applications in the near future.

4.
J Nat Prod ; 77(1): 164-7, 2014 Jan 24.
Artigo em Inglês | MEDLINE | ID: mdl-24422592

RESUMO

Trichodermone (1), the first spiro-cytochalasan with an unprecedented tetracyclic nucleus (7/5/6/5), together with its possible biosynthetic precursor aspochalasin D (2), was isolated from the endophytic fungus Trichoderma gamsii. Compound 2 displayed moderate inhibitory activity against HeLa cells with an IC50 value of 5.72 µM.


Assuntos
Antineoplásicos/isolamento & purificação , Trichoderma/química , Antineoplásicos/química , Antineoplásicos/farmacologia , Citocalasinas/química , Citocalasinas/isolamento & purificação , Citocalasinas/farmacologia , Ensaios de Seleção de Medicamentos Antitumorais , Células HeLa , Humanos , Concentração Inibidora 50 , Estrutura Molecular , Panax notoginseng/microbiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...