Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Chemistry ; 29(62): e202302397, 2023 Nov 08.
Artigo em Inglês | MEDLINE | ID: mdl-37583100

RESUMO

Inkless and erasable printing (IEP) based on chromic materials holds great promise to alleviate environmental and sustainable problems. Metal-organic polymers (MOPs) are bright platforms for constructing IEP materials. However, it is still challenging to design target MOPs with excellent specific functions rationally due to the intricate component-structure-property relationships. Herein, an effective strategy was proposed for the rational design IEP-MOP materials. The stimuli-responsive viologen moiety was introduced into the construction of MOPs to give it potential chromic behaviors and two different coordination models (i. e. bilateral coordination model, M1 ; unilateral coordinated model, M2 ) based on the same viologen ligand were designed. Aided by theoretical calculations, model M1 was recommended secondarily as a more suitable system for IEP materials. Along this line, two representative viologen-ZnII MOPs 1 and 2 with models M1 and M2 were synthesized successfully. Experiments exhibit that 1 does have quicker stimuli response, stronger color contrast and longer radical lifetime compared to 2. Significantly, the obtained 1-IEP media brightly inherits the excellent chromic characteristics of 1 and the flexibility of the paper at the same time, which achieves most daily printing requirements, as well as enough resolution and durability to be used in identification by smart device.

2.
Chemistry ; 29(48): e202301575, 2023 Aug 25.
Artigo em Inglês | MEDLINE | ID: mdl-37306241

RESUMO

Manipulating the radical concentration to modulate the properties in solid multifunctional materials is an attractive topic in various frontier fields. Viologens have the unique redox capability to generate radical states through reversible electron transfer (ET) under external stimuli. Herein, taking the viologens as the model, two kinds of crystalline compounds with different molecule-conjugated systems were designed and synthesized. By subjecting the specific model viologens to pressure, the cross-conjugated 2-X all exhibit much higher radical concentrations, along with more sensitive piezochromic behaviors, compared to the linear-conjugated 1-X. Unexpectedly, we find that the electrical resistance (R) of 1-NO3 decreased by three orders of magnitude with the increasing pressure, while that in high-radical-concentration 2-NO3 remained almost unchanged. To date, such unusual invariant conductivity has not been documented in molecular-based materials under high pressure, breaking the conventional wisdom that the generations of radicals are beneficial to improve conductivity. We highlight that adjusting the molecular conjugation modes can be used as an effective way to regulate the radical concentrations and thus modulate properties rationally.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...