Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 163
Filtrar
1.
Front Aging Neurosci ; 16: 1390310, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38952478

RESUMO

Background: N-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) is a neurotoxin widely used to induce PD models, but the effect of MPTP on the cells and genes of PD has not been fully elucidated. Methods: Single-nucleus RNA sequencing was performed in the Substantia Nigra (SN) of MPTP mice. UMAP analysis was used for the dimensionality reduction visualization of the SN in the MPTP mice. Known marker genes highly expressed genes in each cluster were used to annotate most clusters. Specific Differentially Expressed Genes (DEGs) and PD risk genes analysis were used to find MPTP-associated cells. GO, KEGG, PPI network, GSEA and CellChat analysis were used to reveal cell type-specific functional alterations and disruption of cell-cell communication networks. Subset reconstruction and pseudotime analysis were used to reveal the activation status of the cells, and to find the transcription factors with trajectory characterized. Results: Initially, we observed specific DEGs and PD risk genes enrichment in microglia. Next, We obtained the functional phenotype changes in microglia and found that IGF, AGRN and PTN pathways were reduced in MPTP mice. Finally, we analyzed the activation state of microglia and revealed a pro-inflammatory trajectory characterized by transcription factors Nfe2l2 and Runx1. Conclusion: Our work revealed alterations in microglia function, signaling pathways and key genes in the SN of MPTP mice.

2.
eNeuro ; 2024 Jul 08.
Artigo em Inglês | MEDLINE | ID: mdl-38977304

RESUMO

We investigated the neural signatures of expert decision making in the context of police training in a virtual reality-based shoot/don't shoot scenario. Police officers can use stopping force against a perpetrator, which may require using a firearm and each decision made by an officer to discharge their firearm or not has substantial implications. Therefore it is important to understand the cognitive and underlying neurophysiological processes that lead to such a decision. We used virtual reality-based simulations to elicit ecologically valid behaviour from Authorised Firearms Officers (AFOs) in the UK and matched novices in a Shoot/Don't Shoot task and recorded electroencephalography concurrently. We found that AFOs had consistently faster response times than novices, suggesting our task was sensitive to their expertise. To investigate differences in decision making processes under varying levels of threat and expertise, we analysed electrophysiological signals originating from the anterior cingulate cortex. In line with similar response inhibition tasks, we found greater increases in pre-response theta power when participants inhibited the response to shoot when under no threat as compared to shooting. Most importantly, we showed that when preparing against threat, theta power increase was greater for experts than novices, suggesting that differences in performance between experts and novices are due to their greater orientation towards threat. Additionally, shorter beta-rebounds suggest that experts were "ready for action" sooner. More generally, we demonstrate that investigation of expert decision making should incorporate naturalistic stimuli and an appropriate control group to enhance validity.Significance statement This study aims to unravel the complexities of how expertise affects neural processes during uncertain scenarios by investigating police decision making. We present our variant on shoot/don't shoot tasks which was co-developed with police instructors to allow graded levels of force to elicit realistic responses. We show that experts exhibit superior performance in this virtual reality-based task and that this is associated with greater modulation of frontal midline theta activity prior to a decision. Understanding the intricacies of police decision making-especially concerning the use of firearms-is vital to inform policy effectively. Further, the naturalistic imaging methods employed here hold broader significance for neuroscientists aiming to investigate real world behaviour.

3.
BMC Med Genomics ; 17(1): 164, 2024 Jun 19.
Artigo em Inglês | MEDLINE | ID: mdl-38898455

RESUMO

BACKGROUND: Immunoregulatory drugs regulate the ubiquitin-proteasome system, which is the main treatment for multiple myeloma (MM) at present. In this study, bioinformatics analysis was used to construct the risk model and evaluate the prognostic value of ubiquitination-related genes in MM. METHODS AND RESULTS: The data on ubiquitination-related genes and MM samples were downloaded from The Cancer Genome Atlas (TCGA) and Gene Expression Omnibus (GEO) databases. The consistent cluster analysis and ESTIMATE algorithm were used to create distinct clusters. The MM prognostic risk model was constructed through single-factor and multiple-factor analysis. The ROC curve was plotted to compare the survival difference between high- and low-risk groups. The nomogram was used to validate the predictive capability of the risk model. A total of 87 ubiquitination-related genes were obtained, with 47 genes showing high expression in the MM group. According to the consistent cluster analysis, 4 clusters were determined. The immune infiltration, survival, and prognosis differed significantly among the 4 clusters. The tumor purity was higher in clusters 1 and 3 than in clusters 2 and 4, while the immune score and stromal score were lower in clusters 1 and 3. The proportion of B cells memory, plasma cells, and T cells CD4 naïve was the lowest in cluster 4. The model genes KLHL24, HERC6, USP3, TNIP1, and CISH were highly expressed in the high-risk group. AICAr and BMS.754,807 exhibited higher drug sensitivity in the low-risk group, whereas Bleomycin showed higher drug sensitivity in the high-risk group. The nomogram of the risk model demonstrated good efficacy in predicting the survival of MM patients using TCGA and GEO datasets. CONCLUSIONS: The risk model constructed by ubiquitination-related genes can be effectively used to predict the prognosis of MM patients. KLHL24, HERC6, USP3, TNIP1, and CISH genes in MM warrant further investigation as therapeutic targets and to combat drug resistance.


Assuntos
Biologia Computacional , Mieloma Múltiplo , Ubiquitinação , Humanos , Mieloma Múltiplo/genética , Mieloma Múltiplo/tratamento farmacológico , Mieloma Múltiplo/patologia , Biologia Computacional/métodos , Prognóstico , Regulação Neoplásica da Expressão Gênica , Biomarcadores Tumorais/genética , Nomogramas , Análise por Conglomerados
4.
Pestic Biochem Physiol ; 202: 105890, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38879289

RESUMO

Cytochrome P450 plays a crucial role in regulating insect growth, development, and resisting a variety of stresses. Insect metamorphosis and response to external stress are altered by deleting CYP450 genes. In this study, we identified and analyzed a novel gene of CYP450 family, AccCYP6A13, from Apis cerana cerana, and explored its role in the response of Apis cerana cerana to adverse external stressors. It was found that the expression of AccCYP6A13 was spatiotemporal specificity. The expression level increased with age and reached its highest value in the adult stage. The primarily expressiong location were legs, brain, and epidermis of honeybees. Stress conditions can affect the expression of AccCYP6A13 depending on treatment times. RNA interference experiments have shown that knocking down AccCYP6A13 reduces antioxidant activity and deactivates detoxification enzymes, resulting in oxidative damage accumulation and a decline in detoxification capability in bees, as well as inhibiting numerous antioxidant genes. Additionally, knockdown of the AccCYP6A13 gene in Apis cerana cerana resulted in increased sensitivity to pesticides and increased mortality when treated with neonicotinoid pesticides such as thiamethoxam. AccCYP6A13 overexpression in a prokaryotic system further confirmed its role in resistance to oxidative stress. To summarize, AccCYP6A13 may play an essential role in the normal development and response to environmental stress in Apis cerana cerana. Furthermore, this study contributed to the theoretical understanding of bee resistance biology.


Assuntos
Sistema Enzimático do Citocromo P-450 , Proteínas de Insetos , Estresse Fisiológico , Animais , Abelhas/genética , Sistema Enzimático do Citocromo P-450/genética , Sistema Enzimático do Citocromo P-450/metabolismo , Estresse Fisiológico/genética , Proteínas de Insetos/genética , Proteínas de Insetos/metabolismo , Inseticidas/toxicidade , Tiametoxam , Interferência de RNA , Neonicotinoides/toxicidade , Estresse Oxidativo
5.
Artigo em Inglês | MEDLINE | ID: mdl-38697933

RESUMO

Malus toringoides (Rehd.) Hughes leave, called "Eseye (Ese)", is a traditional medicinal plant from the Tibet province of China that has efficiency of anti-inflammatory, antioxidant and anti-apoptosis to treat cardiac conditions. We herein explored the underlying protective mechanisms of Ese decoction in isoproterenol (ISO)-induced cardiac fibrosis (CF). And treatment with an Ese decoction attenuated tissue injury and decreased the release of IL-1ß, IL-18, TNF-α, and caspase-3 and elevated the Bax/Bcl-2 ratio in CF mice. Damage to the mitochondrial ultrastructure of myocardium was alleviated, and the level of ROS was markedly diminished with Ese treatment. Ese inhibited the expression of proteins associated with pyroptosis by the HK1/NLRP3-signaling pathway, and also improved CF. Based on anti-inflammatory, antioxidative and anti-apoptosis activities effects of Ese decoction, we found that Ese protected against ISO-induced CF, which attributed to its inhibition of inflammation and pyroptosis as mediated by the HK1/NLRP3-signaling pathway.

7.
Cells ; 13(10)2024 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-38786100

RESUMO

Current treatment strategies for multiple myeloma (MM) are highly effective, but most patients develop relapsed/refractory disease (RRMM). The anti-CD38/CD3xCD28 trispecific antibody SAR442257 targets CD38 and CD28 on MM cells and co-stimulates CD3 and CD28 on T cells (TCs). We evaluated different key aspects such as MM cells and T cells avidity interaction, tumor killing, and biomarkers for drug potency in three distinct cohorts of RRMM patients. We found that a significantly higher proportion of RRMM patients (86%) exhibited aberrant co-expression of CD28 compared to newly diagnosed MM (NDMM) patients (19%). Furthermore, SAR442257 mediated significantly higher TC activation, resulting in enhanced MM killing compared to bispecific functional knockout controls for all relapse cohorts (Pearson's r = 0.7). Finally, patients refractory to anti-CD38 therapy had higher levels of TGF-ß (up to 20-fold) compared to other cohorts. This can limit the activity of SAR442257. Vactoserib, a TGF-ß inhibitor, was able to mitigate this effect and restore sensitivity to SAR442257 in these experiments. In conclusion, SAR442257 has high potential for enhancing TC cytotoxicity by co-targeting CD38 and CD28 on MM and CD3/CD28 on T cells.


Assuntos
ADP-Ribosil Ciclase 1 , Mieloma Múltiplo , Linfócitos T , Humanos , Mieloma Múltiplo/tratamento farmacológico , Mieloma Múltiplo/patologia , Mieloma Múltiplo/imunologia , ADP-Ribosil Ciclase 1/metabolismo , ADP-Ribosil Ciclase 1/antagonistas & inibidores , Linfócitos T/imunologia , Linfócitos T/metabolismo , Linfócitos T/efeitos dos fármacos , Complexo CD3/metabolismo , Antígenos CD28/metabolismo , Anticorpos Biespecíficos/farmacologia , Anticorpos Biespecíficos/uso terapêutico , Linhagem Celular Tumoral , Recidiva
8.
Sci Total Environ ; 930: 172738, 2024 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-38670362

RESUMO

Pesticide usage is a common practice to increase crop yields. Nevertheless, the existence of pesticide residues in the surrounding environment presents a significant hazard to pollinators, specifically the potential undisclosed dangers related to emerging nanopesticides. This study examines the impact of abamectin nanocapsules (AbaNCs), created through electrostatic self-assembly, as an insecticide on honey bees. It was determined that AbaNCs upregulated detoxification genes, including CYP450, as well as antioxidant and immune genes in honey bees. Furthermore, AbaNCs affected the activity of crucial enzymes such as superoxide dismutase (SOD). Although no apparent damage was observed in bee gut tissue, AbaNCs significantly decreased digestive enzyme activity. Microbiome sequencing revealed that AbaNCs disrupted gut microbiome, resulting in a reduction of beneficial bacteria such as Bifidobacterium and Lactobacillus. Additionally, these changes in the gut microbiome were associated with decreased activity of digestive enzymes, including lipase. This study enhances our understanding of the impact of nanopesticides on pollinating insects. Through the revelation of the consequences arising from the utilization of abamectin nanocapsules, we have identified potential stress factors faced by these pollinators, enabling the implementation of improved protective measures.


Assuntos
Microbioma Gastrointestinal , Inseticidas , Ivermectina , Nanocápsulas , Animais , Ivermectina/análogos & derivados , Ivermectina/toxicidade , Microbioma Gastrointestinal/efeitos dos fármacos , Abelhas/fisiologia , Abelhas/efeitos dos fármacos , Inseticidas/toxicidade
9.
Appl Environ Microbiol ; 90(4): e0179923, 2024 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-38470148

RESUMO

Queen and worker bees are natural models for aging research, as their lifespans vary considerably independent of genetic variation. Investigating the reasons why queens live longer than workers is of great significance for research on the universal processes of aging in animals. The gut microbiome has received attention as a vital regulator of host health, while its precise role in honeybee aging needs further investigation. The effects and mechanisms behind the relationship between gut microbiota and worker lifespan were measured by transplanting queen bee gut bacteria (QG) and worker bee gut bacteria (WG) into microbiota-free (MF) workers. The transplantation of QG to MF bees significantly extended the workers' lifespans compared with MF and WG bees. Untargeted metabolomics identified 49 lifespan-related differential metabolites, and Kyoto Encyclopedia of Genes and Genomes analysis of these revealed three lifespan-related metabolic pathways: insulin/insulin-like growth factor signaling, immune, and ketone body metabolism pathways. Further verification showed that QG inhibited the expression of insulin-like peptides (ILPs), and the expression of ILPs was lower in natural queens than in natural workers. QG transplantation also stimulated the expression of antioxidant genes and lowered oxidative damage products in natural queen bees. However, gut microbiota transplantation failed to mimic the immune properties and ketone body metabolism profiles of natural queens and workers. Concisely, QG could increase the antioxidant capacity to extend lifespan by inhibiting insulin signaling. These findings may help determine the mechanisms behind queen longevity and provide further insights into the role of gut symbionts. IMPORTANCE: Queen and worker bees share the same genetic background but have vastly different lifespans. The gut microbiome regulates host health, suggesting that differences in lifespan between queen and worker bees could be related to gut bacteria. Herein, we used an innovative method to transplant gut microbiota from adult queen or worker bees to microbiota-free bees. The transplantation of queen gut microbiota to microbiota-free bees extended their lifespan. Insulin/insulin-like growth factor signaling, a highly conserved metabolic pathway related to lifespan, displayed identical expression profiles in natural queen bees and microbiota-free bees transplanted with queen microbiota. This finding significantly expands our understanding of the relationships between intestinal bacteria, host health, and the biology of aging.


Assuntos
Microbioma Gastrointestinal , Longevidade , Abelhas , Animais , Longevidade/fisiologia , Insulina , Antioxidantes , Cetonas
10.
Mol Neurobiol ; 2024 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-38528305

RESUMO

Alzheimer's disease (AD) is a common age-associated progressive neurodegenerative disorder that is implicated in the aberrant regulation of numerous circular RNAs (circRNAs). Here, we reported that circ-Bptf, a conserved circRNA derived from the Bptf gene, showed an age-dependent decrease in the hippocampus of APP/PS1 mice. Overexpression of circ-Bptf significantly reversed dendritic spine loss and learning and memory impairment in APP/PS1 mice. Moreover, we found that circ-Bptf was predominantly localized to the cytoplasm and upregulated p62 expression by binding to miR-138-5p. Furthermore, the miR-138-5p mimics reversed the decreased expression of p62 induced by the silencing of circ-Bptf. Together, our findings suggested that circ-Bptf ameliorated learning and memory impairments via the miR-138-5p/p62 axis in APP/PS1 mice. It may act as a potential player in AD pathogenesis and therapy.

11.
Cancer Res Commun ; 4(3): 757-764, 2024 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-38421887

RESUMO

T cell-engaging antibodies (TCEs) are showing promising efficacy in relapsed/refractory multiple myeloma, even in patients that relapsed after B-cell maturation antigen (BCMA)-targeted therapy. Patients with multiple myeloma may have compromised T-cell health unaccounted for by preclinical models. Here, we use Myeloma Drug Sensitivity Testing (My-DST) for ex vivo measurement of anti-multiple myeloma cytotoxicity for the trispecific CD38/CD28xCD3 TCE SAR442257 through activation of the patients' own endogenous T cells to inform clinical development of the compound in multiple myeloma. My-DST incubates primary mononuclear cells in humanized media for 48 hours followed by flow cytometry for multiple myeloma cell viability with or without drug treatment. SAR442257 was tested on 34 samples from patients with multiple myeloma across disease settings. Potential biomarkers, T-cell dependence, and degranulation were assessed. SAR442257 was effective at low dose in My-DST cultures. High ex vivo response rates were observed in primary aspirates taken from patients with multiple myeloma at diagnosis, with modestly reduced response in multiple myeloma recently treated with anti-CD38 mAbs. SAR442257 was highly effective in patients relapsing after BCMA therapy. The CD38/CD28xCD3 trispecific format was substantially more effective than a conventional bispecific CD38/CD3 antibody format and CD38 mAbs. Anti-multiple myeloma cell cytotoxicity was dependent on the presence of endogenous T cells. Surface CD38 expression was the strongest biomarker of TCE response. My-DST is capable of measuring T cell-dependent killing using the multiple myeloma patient's own bone marrow-derived T cells. SAR442257 shows promise for multiple myeloma and may be best suited for patients declared resistant to both CD38 mAbs and BCMA-targeted therapy. SIGNIFICANCE: This study introduces the use of My-DST to measure and characterize sensitivity to anti-CD38 T-cell engager SAR442257 in primary samples using matched endogenous T cells. Preclinical testing in samples from patients with diverse treatment history supports further testing in post-chimeric antigen receptor T-cell multiple myeloma.


Assuntos
Anticorpos Monoclonais , Antineoplásicos , Mieloma Múltiplo , Humanos , Mieloma Múltiplo/tratamento farmacológico , Linfócitos T , Antígeno de Maturação de Linfócitos B/uso terapêutico , ADP-Ribosil Ciclase 1 , Recidiva Local de Neoplasia/tratamento farmacológico , Antineoplásicos/uso terapêutico
12.
Ecol Evol ; 14(2): e10878, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38304274

RESUMO

Mineral licks are indispensable habitats to the life history of large mammal herbivores (LMH). Geophagy at licks may provide the necessary minerals for LMH, while LMH may be ecosystem engineers of licks by altering vegetation cover and soil physicochemical properties (SPCP). However, the precise relationship between the LMH and licks remains unclear. To clarify the geophagy function of licks for LMH and their influence on soil at licks, we recorded visitation patterns of sika deer around licks and compared SPCP and microbial communities with the surrounding matrix in a firebreak adjacent to the Sino-Russian border. Our study indirectly supports the "sodium supplementation" hypothesis. Proofs included (1) a significantly higher sodium, iron, and aluminum contents than the matrix, while lower carbon, nitrogen, and moisture contents; (2) significantly higher deer visitation during sodium-demand season (growing season), along with an avoidance of licks with high iron contents, which is toxic when overdose. The microbes at the licks differed from those at the matrix, mainly driven by low soil carbon and nitrogen and altered biogeochemical cycles. The microbial communities of licks are vulnerable because of their unstable state and susceptibility to SPCP changes. Structural equation modeling (SEM) clearly showed a much stronger indirect effect of deer on microbes at licks than at the matrix, especially for bacteria. Multiple deer behaviors at licks, such as grazing, trampling, and excretion, can indirectly shape and stabilize microbes by altering carbon and nitrogen input. Our study is the first to characterize soil microbial communities at mineral licks and demonstrate the processes by which LMH shapes those communities. More studies are required to establish a general relationship between the LMH and licks to promote the conservation of natural licks for wildlife.

13.
Exp Ther Med ; 27(3): 117, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38361515

RESUMO

Liquiritin (LIQ) is a flavonoid known for its cardioprotective properties, extracted from Glycyrrhiza uralensis Fisch. The purpose of the present study was to investigate the protective mechanism of LIQ against hypoxia/reoxygenation (H/R) injury through in vitro experiments, with the goal of enhancing its pharmacological effects. Initially, network pharmacology was employed to explore the targets and mechanisms of LIQ. Subsequently, an in vitro H/R model was established using H9c2 cells. Potential targets for LIQ and myocardial ischemia-reperfusion injury (MIRI) were identified through online databases. The STRING, Cytoscape and DAVID databases were used to extract intersecting targets and mechanisms. In vitro experiments were conducted to validate these findings, assessing cardiac enzymes, oxidative stress indicators, mitochondrial fluorescence, apoptotic fluorescence, inflammation and related protein expression. The network pharmacological analysis revealed that the protective effects of LIQ on MIRI involve oxidative stress, inflammation and apoptosis. The results of in vitro experimental validation demonstrated that LIQ significantly reduced the activities of lactated dehydrogenase and creatine kinase isoenzyme-MB (P<0.05 or 0.01), as well as the level of malondialdehyde (P<0.01). It also inhibited the production of reactive oxygen species (P<0.01), the release of inflammatory factors (P<0.05 or 0.01) and apoptosis (P<0.01). By contrast, the LIQ pre-treatment group exhibited a significant increase in mitochondrial membrane potential level (P<0.05 or 0.01) and the activities of antioxidant enzymes superoxide dismutase, catalase and glutathione peroxidase (P<0.05 or 0.01). Furthermore, LIQ reduced the protein expressions of TNF-α receptor type 1 (TNFR1) and MMP9, along with the level of NF-κB phosphorylation (P<0.05 or 0.01). In conclusion, LIQ mitigated H/R-induced cardiomyocyte injury through mechanisms that may involve antioxidants, anti-apoptotic effects, protection against mitochondrial damage and suppression of inflammatory levels. These effects are achieved via inhibition of the TNFR1/NF-κB/MMP9 pathway.

14.
Food Sci Nutr ; 12(1): 180-191, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38268894

RESUMO

Cichoric acid (CA), a natural phenolic compound found in many plants, has been reported to have antioxidant, anti-inflammatory, hypoglycemic, and other effects. The aim of this study was to determine the potential role and underlying mechanisms of CA in isoproterenol (ISO)-induced myocardial fibrosis (MF). The MF model was induced by subcutaneous ISO injection in mice. Blood and heart tissue were collected for examination. Hematoxylin and eosin staining and Masson's trichrome staining were used to evaluate the histopathological changes and collagen deposition. The production of reactive oxygen species markers was observed by fluorescence microscopy, the degree of cardiomyocyte microstructure injury was observed by transmission electron microscope, and oxidative stress factors were detected by kit method, and the effect of CA on inflammatory factors was detected by ELISA. The expression levels of collagen proteins and signaling pathways were further investigated by western blotting. The results showed that CA inhibited the expression of ISO-induced proinflammatory factors (TNF-α, IL-1ß, and IL-18) and proteins (HK1, NLRP3, caspase-1, cleaved-caspase-1, and ASC), and regulated the expression of apoptotic factors (caspase-3, cleaved-caspase-3, Bax, and Bcl-2). The results indicated that CA may regulate the HK1/NLRP3 inflammasome pathway by inhibiting HK1 expression and play a protective role in MF.

15.
Biochimie ; 218: 57-68, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-37704078

RESUMO

Environmental pollution has gained negative attention in recent years. The pesticides and heavy metals are top list of environmental toxicants directly endangering the survival and development of Apis cerana cerana. Cyclin-dependent kinases (CDKs) are heteromeric serine/threonine kinases that participate in cell cycle regulation and have a vital role in pesticide and heavy metal stress in Apis cerana cerana. In this experiment, we filtered out CDK8 gene from Apis cerana cerana (AccCDK8) and investigated its functions of pesticide and heavy metals resistance. Sequence analysis indicated that AccCDK8 is highly homologous to multiple CDK8s and contains a highly conserved CDK active site sequence. Phylogenetic analysis showed that AmCDK8 and AccCDK8 were closely related evolutionarily in Apis mellifera. Transcriptome analysis revealed that AccCDK8 expression was differentially affected after exposure to pesticide and heavy metal stresses. This indicates that AccCDK8 has a significant role in the resistance of Apis cerana cerana to pesticide and heavy metal stresses. It has implications for studying the function of CDK in other insects in response to stress.


Assuntos
Metais Pesados , Praguicidas , Abelhas/genética , Animais , Praguicidas/toxicidade , Filogenia , Perfilação da Expressão Gênica , Metais Pesados/toxicidade
16.
J Sci Food Agric ; 104(1): 225-234, 2024 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-37549225

RESUMO

BACKGROUND: Environmental stress can induce oxidative stress in Apis cerana cerana, leading to cellular oxidative damage, reduced vitality, and even death. Currently, owing to an incomplete understanding of the molecular mechanisms by which A. cerana cerana resists oxidative damage, there is no available method to mitigate the risk of this type of damage. Cyclin plays an important role in cell stress resistance. The aim of this study was to explore the in vivo protection of cyclin H against oxidative damage induced by abiotic stress in A. cerana cerana and clarify the mechanism of action. We isolated and identified the AccCyclin H gene in A. cerana cerana and analysed its responses to different exogenous stresses. RESULTS: The results showed that different oxidative stressors can induce or inhibit the expression of AccCyclin H. After RNA-interference-mediated AccCyclin H silencing, the activity of antioxidant-related genes and related enzymes was inhibited, and trehalose metabolism was reduced. AccCyclin H gene silencing reduced A. cerana cerana high-temperature tolerance. Exogenous trehalose supplementation enhanced the total antioxidant capacity of A. cerana cerana, reduced the accumulation of oxidants, and improved the viability of A. cerana cerana under high-temperature stress. CONCLUSION: Our findings suggest that trehalose can alleviate adverse stress and that AccCyclin H may participate in oxidative stress reactions by regulating trehalose metabolism. © 2023 Society of Chemical Industry.


Assuntos
Antioxidantes , Trealose , Animais , Abelhas/genética , Antioxidantes/metabolismo , Estresse Oxidativo , Estresse Fisiológico , Interferência de RNA , Proteínas de Insetos/química
17.
Sci Total Environ ; 912: 169318, 2024 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-38143006

RESUMO

Cadmium (Cd) is a toxic non-essential metal element that can enter the honey bee body through air, water and soil. Currently, there is a lack of sufficient research on the effects of Cd on A. cerana cerana, especially the potential risks of long-term exposure to sublethal concentrations. In order to ascertain the toxicological effects of the heavy metal Cd on bees, we performed laboratory-based toxicity experiments on worker bees and conducted analyses from three distinctive facets: antioxidative, immunological, and gut microbiota. The results showed that exposure of bees to high concentrations of Cd resulted in acute mortality, and the increase in mortality was concentration dependent. In long-term exposure to sublethal concentrations, Cd reduced the number of transcripts of antioxidant genes (AccSOD1, AccTPx3 and AccTPx4) and superoxide dismutase activity, causing an increase in malondialdehyde content. Simultaneously, the transcription of immune-related genes (AccAbaecin and AccApidaecin) and acetylcholinesterase activities was inhibited. Furthermore, Cd changes the structural characteristics of bacterial and fungal communities in the gut, disrupting the balance of microbial communities. In conclusion, the health and survival of honey bees are affected by Cd. This study provides a scientific basis for investigating the toxicological mechanisms and control strategies of the heavy metal Cd on honey bees, while facilitating a better understanding and protection of these valuable honey bees.


Assuntos
Microbioma Gastrointestinal , Himenópteros , Doenças do Sistema Imunitário , Abelhas , Animais , Cádmio/toxicidade , Acetilcolinesterase , Antioxidantes , Estresse Oxidativo
18.
Heliyon ; 9(11): e21217, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-38027628

RESUMO

The specific role of phlorizin (PHL), which has antioxidant, anti-inflammatory, hypoglycemic, antiarrhythmic and antiaging effects, on myocardial fibrosis (MF) and the related pharmacological mechanisms remain unknown. The objective of this study was to determine the protective actions of PHL on isoprenaline (ISO)-induced MF and its molecular mechanisms in mice. PHL was administered at 100 and 200 mg/kg for 15 consecutive days with a subcutaneous injection of ISO (10 mg/kg). MF was induced by ISO and alleviated by treatment with PHL, as shown by reduced fibrin accumulation in the myocardial interstitium and decreased levels of myocardial enzymes, such as creatinine kinase-MB, lactate dehydrogenase, and aspartate transaminase. In addition, PHL significantly decreased the expression of the fibrosis-related factors alpha smooth muscle actin, collagen I, and collagen III induced by ISO. The generation of intracellular reactive oxygen species induced by ISO was attenuated after PHL treatment. The malondialdehyde level was reduced, whereas the levels of superoxide dismutase, catalase, and glutathione were elevated with PHL administration. Moreover, compared to ISO, the level of Bcl-2 was increased and the level of Bax protein was decreased in the PHL groups. PHL relieved elevated TNF-α, IL-1ß, and IL-18 levels as well as cardiac mitochondrial damage resulting from ISO. Further studies showed that PHL downregulated the high expression of hexokinase 1 (HK1), NLRP3, ASC, Caspase-1, and GSDMD-N caused by ISO. In conclusion, our findings suggest that PHL protects against ISO-induced MF due to its antioxidant, anti-apoptotic, and anti-inflammatory activities and via inhibition of pyroptosis mediated by the HK1/NLRP3 signaling pathway in vivo.

19.
Commun Biol ; 6(1): 1072, 2023 10 21.
Artigo em Inglês | MEDLINE | ID: mdl-37865654

RESUMO

Common ragweed is an invasive alien species causing severe allergies in urban residents. Understanding its urban invasion pathways is crucial for effective control. However, knowledge is limited, with most studies focusing on agricultural and natural areas, and occurrence record-based studies exhibiting uncertainties. We address this gap through a study in East China cities, combining population genetics and occurrence records. Leaf samples from 37 urban common ragweed populations across 15 cities are collected. Genomic and chloroplast DNA extraction facilitate analysis of spatial genetic patterns and gene flows. Additionally, international grain trade data is examined to trace invasion sources. Results indicate spatial genetic patterns impacted by multiple introductions over time. We infer the modern grain trade between the United States and China as the primary invasion pathway. Also, cities act as transportation hubs and ports of grain importation might disperse common ragweed to urban areas. Invasive species control should account for cities as potential landing and spread hubs of common ragweed.


Assuntos
Ambrosia , Genética Populacional , Estados Unidos , Cidades , Ambrosia/genética , Espécies Introduzidas , Agricultura
20.
Int J Mol Sci ; 24(17)2023 Aug 29.
Artigo em Inglês | MEDLINE | ID: mdl-37686166

RESUMO

This study aimed to assess the impact of oleic acid (OA) supplementation on the biosynthesis of 10-hydroxy-2-decenoic acid (10-HDA) in Apis mellifera ligustica. In experiment 1, varying concentrations of OA (2%, 4%, 6% and 8%) were added to an artificial diet for newly emerged bees reared in cages. Analysis of 10-HDA content and gene expression in the mandibular gland (MG) revealed that the 8% OA treatment had the greatest impact on promoting the synthesis of 10-HDA. Subsequent investigations utilized RNA-seq and lipidomics to characterize the molecular signature in the MG after feeding the 8% OA diet. Phosphatidylcholine (PC) and triacylglycerol (TAG) were found to be the predominant lipids in the MG of worker bees. A total of 154 TAGs were identified, with TAG (18:1-18:1-18:1) exhibiting the highest abundance, which increased by 1.5 times. The major TAG species contained palmitic acid (16:0) and oleic acid (18:1) in their structure, which was associated with fatty acid composition of diet. The increase in abundance of main TAGs may be attributed to the upregulation of glycerol-3-phosphate acyltransferase (Gpat) and glycerol kinase (GK) gene expression at the transcriptional level. The upregulation of differentially expressed genes (DEGs) related to carbohydrate metabolism may contribute to meeting the heightened metabolic demands of the MGs in worker bees. Royal jelly (RJ) samples from bee colonies fed with the 8% OA diet exhibited higher 10-HDA level than RJ collected from bee colonies fed with the artificial diet. These results indicate that 8% OA addition in the diet enhanced biosynthesis of 10-HDA in the mandibular gland, which was accompanied by significant and highly species-selective remodeling of TAGs.


Assuntos
Ácidos Graxos Monoinsaturados , Ácido Oleico , Abelhas , Animais , Glicerol-3-Fosfato O-Aciltransferase , Lecitinas , Triglicerídeos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...