Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 36
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Biol Chem ; 300(7): 107405, 2024 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-38788853

RESUMO

Exogenous omega-3 fatty acids, particularly docosahexaenoic acid (DHA), have shown to exert beneficial effects on nonalcoholic fatty liver disease (NAFLD), which is characterized by the excessive accumulation of lipids and chronic injury in the liver. However, the effect of endogenous DHA biosynthesis on the lipid homeostasis of liver is poorly understood. In this study, we used a DHA biosynthesis-deficient zebrafish model, elovl2 mutant, to explore the effect of endogenously biosynthesized DHA on hepatic lipid homeostasis. We found the pathways of lipogenesis and lipid uptake were strongly activated, while the pathways of lipid oxidation and lipid transport were inhibited in the liver of elovl2 mutants, leading to lipid droplet accumulation in the mutant hepatocytes and NAFLD. Furthermore, the elovl2 mutant hepatocytes exhibited disrupted mitochondrial structure and function, activated endoplasmic reticulum stress, and hepatic injury. We further unveiled that the hepatic cell death and injury was mainly mediated by ferroptosis, rather than apoptosis, in elovl2 mutants. Elevating DHA content in elovl2 mutants, either by the introduction of an omega-3 desaturase (fat1) transgene or by feeding with a DHA-rich diet, could strongly alleviate NAFLD features and ferroptosis-mediated hepatic injury. Together, our study elucidates the essential role of endogenous DHA biosynthesis in maintaining hepatic lipid homeostasis and liver health, highlighting that DHA deficiency can lead to NAFLD and ferroptosis-mediated hepatic injury.

2.
Ecotoxicol Environ Saf ; 273: 116121, 2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38402792

RESUMO

In recent years, nanoplastics (NPs) and triclosan (TCS, a pharmaceutical and personal care product) have emerged as environmental pollution issues, and their combined presence has raised widespread concern regarding potential risks to organisms. However, the combined toxicity and mechanisms of NPs and TCS remain unclear. In this study, we investigated the toxic effects of polystyrene NPs and TCS and their mechanisms on KGN cells, a human ovarian granulosa cell line. We exposed KGN cells to NPs (150 µg/mL) and TCS (15 µM) alone or together for 24 hours. Co-exposure significantly reduced cell viability. Compared with exposure to NPs or TCS alone, co-exposure increased reactive oxygen species (ROS) production. Interestingly, co-exposure to NPs and TCS produced synergistic effects. We examined the activity of superoxide dismutase (SOD) and catalase (CAT), two antioxidant enzymes; it was significantly decreased after co-exposure. We also noted an increase in the lipid oxidation product malondialdehyde (MDA) after co-exposure. Furthermore, co-exposure to NPs and TCS had a more detrimental effect on mitochondrial function than the individual treatments. Co-exposure activated the NRF2-KEAP1-HO-1 antioxidant stress pathway. Surprisingly, the expression of SESTRIN2, an antioxidant protein, was inhibited by co-exposure treatments. Co-exposure to NPs and TCS significantly increased the autophagy-related proteins LC3B-II and LC3B-Ⅰ and decreased P62. Moreover, co-exposure enhanced CASPASE-3 expression and inhibited the BCL-2/BAX ratio. In summary, our study revealed the synergistic toxic effects of NPs and TCS in vitro exposure. Our findings provide insight into the toxic mechanisms associated with co-exposure to NPs and TCS to KGN cells by inducing oxidative stress, activations of the NRF2-KEAP1-HO-1 pathway, autophagy, and apoptosis.


Assuntos
Triclosan , Feminino , Humanos , Espécies Reativas de Oxigênio/metabolismo , Triclosan/toxicidade , Triclosan/metabolismo , Antioxidantes/metabolismo , Proteína 1 Associada a ECH Semelhante a Kelch/metabolismo , Microplásticos/metabolismo , Poliestirenos/toxicidade , Poliestirenos/metabolismo , Fator 2 Relacionado a NF-E2/metabolismo , Estresse Oxidativo , Células da Granulosa/metabolismo
3.
Int J Med Mushrooms ; 26(1): 55-66, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38305262

RESUMO

The liver was regarded as the most important metabolic and detoxification organ in vivo, and Morchella esculenta had been reported as the admittedly rare edible fungus belonging to Ascomycetes contributing to the abundant bioactivities. The objective of this study aimed to confirm the potential antioxidant activities of selenium mycelium polysaccharides (Se-MIP) from M. esculenta against alcoholic liver diseases (ALD) in mice. The results indicated that a selenium concentration of 25 µg/mL exhibited potential in vitro antioxidant capacities of Se-MIP. The in vivo mice results demonstrated that Se-MIP showed potential anti-ALD effects by improving the antioxidant activities and alleviating the hepatic dysfunctions. The present conclusions suggested that Se-MIP could be used as a candidate on improving ALD and its complications for further clinical investigations.


Assuntos
Agaricales , Ascomicetos , Hepatopatias Alcoólicas , Selênio , Camundongos , Animais , Antioxidantes/farmacologia , Antioxidantes/metabolismo , Selênio/metabolismo , Hepatopatias Alcoólicas/tratamento farmacológico , Hepatopatias Alcoólicas/prevenção & controle , Ascomicetos/metabolismo , Polissacarídeos/farmacologia , Polissacarídeos/metabolismo , Agaricales/metabolismo , Micélio/metabolismo
4.
Nat Commun ; 15(1): 1137, 2024 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-38326293

RESUMO

High-performance platinum-group-metal-free alkaline hydrogen oxidation reaction catalysts are essential for the hydroxide exchange membrane fuel cells, which generally require high Pt loadings on the anode. Herein, we report a highly active hydrogen oxidation reaction catalyst, NiCuCr, indicated by the hydroxide exchange membrane fuel cell with a high peak power density of 577 mW cm-2 (18 times as high as the Ni/C anode) and a stability of more than 150 h (a degradation rate slower by 7 times than the Ni/C anode). The spectroscopies demonstrate that the alloy effect from Cu weakens the hydrogen binding, and the surface Cr2O3 species enhance the interfacial water binding. Both effects bring an optimized apparent hydrogen binding energy and thus lead to the high hydrogen oxidation reaction performance of NiCuCr. These results suggest that the apparent hydrogen binding energy determines the hydrogen oxidation reaction performance and that its tuning is beneficial toward high electrocatalytic performance.

5.
Zool Res ; 45(1): 176-188, 2024 Jan 18.
Artigo em Inglês | MEDLINE | ID: mdl-38199972

RESUMO

Omega-3 polyunsaturated fatty acids (n-3 PUFAs), particularly docosahexaenoic acid (22:6n-3, DHA), play crucial roles in the reproductive health of vertebrates, including humans. Nevertheless, the underlying mechanism related to this phenomenon remains largely unknown. In this study, we employed two zebrafish genetic models, i.e., elovl2 -/- mutant as an endogenous DHA-deficient model and fat1 (omega-3 desaturase encoding gene) transgenic zebrafish as an endogenous DHA-rich model, to investigate the effects of DHA on oocyte maturation and quality. Results show that the elovl2 -/- mutants had much lower fecundity and poorer oocyte quality than the wild-type controls, while the fat1 zebrafish had higher fecundity and better oocyte quality than wild-type controls. DHA deficiency in elovl2 -/- embryos led to defects in egg activation, poor microtubule stability, and reduced pregnenolone levels. Further study revealed that DHA promoted pregnenolone synthesis by enhancing transcription of cyp11a1, which encodes the cholesterol side-chain cleavage enzyme, thereby stabilizing microtubule assembly during oogenesis. In turn, the hypothalamic-pituitary-gonadal axis was enhanced by DHA. In conclusion, using two unique genetic models, our findings demonstrate that endogenously synthesized DHA promotes oocyte maturation and quality by promoting pregnenolone production via transcriptional regulation of cyp11a1.


Assuntos
Ácidos Docosa-Hexaenoicos , Peixe-Zebra , Animais , Humanos , Enzima de Clivagem da Cadeia Lateral do Colesterol , Oogênese/genética , Oócitos
6.
Nat Commun ; 14(1): 7918, 2023 Dec 14.
Artigo em Inglês | MEDLINE | ID: mdl-38097571

RESUMO

The combination of genome editing and primordial germ cell (PGC) transplantation has enormous significance in the study of developmental biology and genetic breeding, despite its low efficiency due to limited number of donor PGCs. Here, we employ a combination of germplasm factors to convert blastoderm cells into induced PGCs (iPGCs) in zebrafish and obtain functional gametes either through iPGC transplantation or via the single blastomere overexpression of germplasm factors. Zebrafish-derived germplasm factors convert blastula cells of Gobiocypris rarus into iPGCs, and Gobiocypris rarus spermatozoa can be produced by iPGC-transplanted zebrafish. Moreover, the combination of genome knock-in and iPGC transplantation perfectly resolves the contradiction between high knock-in efficiency and early lethality during embryonic stages and greatly improves the efficiency of genome knock-in. Together, we present an efficient method for generating PGCs in a teleost, a technique that will have a strong impact in basic research and aquaculture.


Assuntos
Blastômeros , Peixe-Zebra , Masculino , Animais , Peixe-Zebra/genética , Blástula , Células Germinativas
7.
Bioengineering (Basel) ; 10(9)2023 Sep 11.
Artigo em Inglês | MEDLINE | ID: mdl-37760175

RESUMO

Astaxanthin is a fascinating molecule with powerful antioxidant activity, synthesized exclusively by specific microorganisms and higher plants. To expand astaxanthin production, numerous studies have employed metabolic engineering to introduce and optimize astaxanthin biosynthetic pathways in microorganisms and plant hosts. Here, we report the metabolic engineering of animal cells in vitro to biosynthesize astaxanthin. This was accomplished through a two-step study to introduce the entire astaxanthin pathway into human embryonic kidney cells (HEK293T). First, we introduced the astaxanthin biosynthesis sub-pathway (Ast subp) using several genes encoding ß-carotene ketolase and ß-carotene hydroxylase enzymes to synthesize astaxanthin directly from ß-carotene. Next, we introduced a ß-carotene biosynthesis sub-pathway (ß-Car subp) with selected genes involved in Ast subp to synthesize astaxanthin from geranylgeranyl diphosphate (GGPP). As a result, we unprecedentedly enabled HEK293T cells to biosynthesize free astaxanthin from GGPP with a concentration of 41.86 µg/g dry weight (DW), which represented 66.19% of the total ketocarotenoids (63.24 µg/g DW). Through optimization steps using critical factors in the astaxanthin biosynthetic process, a remarkable 4.14-fold increase in total ketocarotenoids (262.10 µg/g DW) was achieved, with astaxanthin constituting over 88.82%. This pioneering study holds significant implications for transgenic animals, potentially revolutionizing the global demand for astaxanthin, particularly within the aquaculture sector.

8.
J Colloid Interface Sci ; 635: 305-315, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36587582

RESUMO

The main goal of researchers is to obtain cheap cocatalysts that can promote the photocatalytic activity of catalysts. In this work, a series of CoS2/g-C3N4 (denoted as CoS2/CN) composite photocatalysts were synthesized by photodepositing CoS2 on g-C3N4 surface. The size of CoS2 species could be tuned from single-atom to nanometer scale, which had effect on photocatalysis. The 5CoS2/CN sample with proper nano size of CoS2 cocatalyst had the best photocatalytic performance (1707.19 µmol g-1h-1) in producing H2 under visible light irradiation (λ > 420 nm). Its photocatalytic activity was about 1434.6 times higher than that of pure g-C3N4 and almost equal with that of Pt/CN catalyst (1799.54 µmol g-1h-1). The Density Functional Theory (DFT) calculation results further suggested that the ability of accumulating the electrons of the cocatalyst was based on the size effect of CoS2, and the proper size of the cocatalyst efficiently promoted the separation of photogenerated electron-hole pairs.

9.
Environ Sci Pollut Res Int ; 30(12): 34214-34228, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36504299

RESUMO

A systematic review and meta-analysis were conducted to understand the association of phthalates and their metabolites with sperm quality in humans. By June 30, 2022, relevant literature on the effects of phthalates and their metabolites on sperm quality were searched and collected using three English-language databases including PubMed, EMbase, and Web of Science. Two researchers independently screened literature, extracted data, and assessed risk of bias. Stata 11 and RevMan 5.3 were used to conduct meta-analysis, test publication bias, and sensitivity analysis. A total of 12 literature were included for meta-analysis, excluding literature with different effect sizes. The results of meta-analysis indicated that monobutyl phthalate (MBP) and monobenzyl phthalate (MBzP) in urine were negatively correlated with semen concentration, and the results were statistically significant (MBP, pooled odds ratio (OR), 95% confidence interval (CI): 2.186 (1.471, 3.248), P < 0.05) and (MBzP, pooled OR (95%CI): 1.882 (1.471, 3.248), P < 0.05). Furthermore, the level of Di-(2-ethylhexyl) phthalate (DEHP) in semen was negatively correlated with semen concentration and the combined effect size was (pooled correlation coefficients (r) (95%CI): -0.225 (-0.319, -0.192), P < 0.05). However, the associations between MBP and MBzP with sperm motility and sperm morphology were not statistically significant (P > 0.05). And there was also no significant correlation between monoethyl phthalate (MEP), monomethyl phthalate (MMP), and mono-2-ethylhexyl phthalate (MEHP) and semen parameters, including semen concentration, sperm motility, and sperm morphology (P > 0.05). In summary, this current study provides moderate-certainty evidence for the data demonstrated that is a negative correlation between urine MBP levels, urine MBzP levels, and semen DEHP levels with semen concentration. In the future, more longitudinal cohort studies are needed to help elucidate the overall association.


Assuntos
Dietilexilftalato , Poluentes Ambientais , Ácidos Ftálicos , Masculino , Humanos , Análise do Sêmen , Sêmen/metabolismo , Dietilexilftalato/metabolismo , Motilidade dos Espermatozoides , Exposição Ambiental/análise , Espermatozoides , Ácidos Ftálicos/análise , Estudos de Coortes , Poluentes Ambientais/metabolismo
10.
Zool Res ; 44(1): 63-77, 2023 Jan 18.
Artigo em Inglês | MEDLINE | ID: mdl-36317480

RESUMO

Stearyl coenzyme A desaturase (SCD), also known as delta-9 desaturase, catalyzes the rate-limiting step in the formation of monounsaturated fatty acids. In mammals, depletion or inhibition of SCD activity generally leads to a decrease in triglycerides and cholesteryl esters. However, the endogenous role of scd in teleost fish remains unknown. Here, we generated a zebrafish scd mutant (scd-/-) to elucidate the role of scd in lipid metabolism and sexual development. Gas chromatography-mass spectrometry (GC-MS) showed that the scd-/- mutants had increased levels of saturated fatty acids C16:0 and C18:0, and decreased levels of monounsaturated fatty acids C16:1 and C18:1. The mutant fish displayed a short stature and an enlarged abdomen during development. Unlike Scd-/- mammals, the scd-/- zebrafish showed significantly increased fat accumulation in the whole body, especially in the liver, leading to hepatic mitochondrial dysfunction and severe cell apoptosis. Mechanistically, srebf1, a gene encoding a transcriptional activator related to adipogenesis, acc1 and acaca, genes involved in fatty acid synthesis, and dgat2, a key gene involved in triglyceride synthesis, were significantly upregulated in mutant livers to activate fatty acid biosynthesis and adipogenesis. The scd-/- males exhibited defective natural mating behavior due to defective genital papillae but possessed functional mature sperm. All defects in the scd-/- mutants could be rescued by ubiquitous transgenic overexpression of scd. In conclusion, our study demonstrates that scd is indispensable for maintaining lipid homeostasis and development of secondary sexual characteristics in zebrafish.


Assuntos
Estearoil-CoA Dessaturase , Peixe-Zebra , Masculino , Animais , Estearoil-CoA Dessaturase/genética , Estearoil-CoA Dessaturase/metabolismo , Peixe-Zebra/genética , Peixe-Zebra/metabolismo , Sêmen/metabolismo , Ácidos Graxos Monoinsaturados/metabolismo , Ácidos Graxos/metabolismo , Mamíferos
11.
Development ; 149(24)2022 12 15.
Artigo em Inglês | MEDLINE | ID: mdl-36533583

RESUMO

Many maternal mRNAs are translationally repressed during oocyte development and spatio-temporally activated during early embryogenesis, which is crucial for oocyte and early embryo development. By analyzing maternal mutants of nanog (Mnanog) in zebrafish, we demonstrated that Nanog tightly controls translation of maternal mRNA during oogenesis via transcriptional repression of eukaryotic translation elongation factor 1 alpha 1, like 2 (eef1a1l2). Loss of maternal Nanog led to defects of egg maturation, increased endoplasmic reticulum stress, and an activated unfold protein response, which was caused by elevated translational activity. We further demonstrated that Nanog, as a transcriptional repressor, represses the transcription of eefl1a1l2 by directly binding to the eef1a1l2 promoter in oocytes. More importantly, depletion of eef1a1l2 in nanog mutant females effectively rescued the elevated translational activity in oocytes, oogenesis defects and embryonic defects of Mnanog embryos. Thus, our study demonstrates that maternal Nanog regulates oogenesis and early embryogenesis through translational control of maternal mRNA via a mechanism whereby Nanog acts as a transcriptional repressor to suppress transcription of eef1a1l2.


Assuntos
RNA Mensageiro Estocado , Peixe-Zebra , Animais , Feminino , RNA Mensageiro Estocado/metabolismo , Regulação da Expressão Gênica no Desenvolvimento , Oogênese/genética , Desenvolvimento Embrionário/genética , Oócitos/metabolismo , Biossíntese de Proteínas , Proteína Homeobox Nanog/genética , Proteína Homeobox Nanog/metabolismo , Proteínas de Peixe-Zebra/genética , Proteínas de Peixe-Zebra/metabolismo
12.
Sci China Life Sci ; 65(5): 969-987, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-34586576

RESUMO

The surrogate reproduction technique, such as inter-specific spermatogonial stem cells (SSCs) transplantation (SSCT), provides a powerful tool for production of gametes derived from endangered species or those with desirable traits. However, generation of genome-edited gametes from a different species or production of gametes from a phylogenetically distant species such as from a different subfamily, by SSCT, has not succeeded. Here, using two small cyprinid fishes from different subfamilies, Chinese rare minnow (gobiocypris rarus, for brief: Gr) and zebrafish (danio rerio), we successfully obtained Gr-derived genome-edited sperm in zebrafish by an optimized SSCT procedure. The transplanted Gr SSCs supported the host gonadal development and underwent normal spermatogenesis, resulting in a reconstructed fertile testis containing Gr spermatids and zebrafish testicular somatic cells. Interestingly, the surrogate spermatozoa resembled those of host zebrafish but not donor Gr in morphology and swimming behavior. When pou5f3 and chd knockout Gr SSCs were transplanted, Gr-derived genome-edited sperm was successfully produced in zebrafish. This is the first report demonstrating surrogate production of gametes from a different subfamily by SSCT, and surrogate production of genome-edited gametes from another species as well. This method is feasible to be applied to future breeding of commercial fish and livestock.


Assuntos
Células-Tronco Germinativas Adultas , Peixe-Zebra , Células-Tronco Germinativas Adultas/transplante , Animais , Masculino , Espermatogênese/genética , Espermatogônias/transplante , Espermatozoides , Transplante de Células-Tronco/métodos , Testículo , Peixe-Zebra/genética
13.
Endocrinology ; 163(2)2022 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-34932120

RESUMO

Cytochrome P45011A1, encoded by Cyp11a1, converts cholesterol to pregnenolone (P5), the first and rate-limiting step in steroidogenesis. In zebrafish, cyp11a1 is maternally expressed and cyp11a2 is considered the ortholog of Cyp11a1 in mammals. A recent study has shown that depletion of cyp11a2 resulted in steroidogenic deficiencies and the mutants developed into males with feminized secondary sexual characteristics. Here, we independently generated cyp11a2 mutants in zebrafish and showed that the mutants can develop into males and females in the juvenile stage, but finally into infertile males with defective mating behavior in the adult stage. In the developing ovaries, the cyp11a2 mutation led to stage I oocyte apoptosis and final sex reversal, which could be partially rescued by treatment with P5 but not estradiol. In the developing testes, depletion of cyp11a2 resulted in dysfunction of Sertoli cells and lack of functional Leydig cells. Spermatogonial stem cells (SSCs) in the mutant testes underwent active self-renewal but no differentiation, resulting in a high abundance of SSCs in the testis, as revealed by immunofluorescence staining with Nanos2 antibody. The high abundance and differentiation competence of SSCs in the mutant testes were verified by a novel testicular cell transplantation method developed in this study, by transplanting mutant testicular cells into germline-depleted wild-type (WT) fish. The transplanted mutant SSCs efficiently differentiated into functional spermatids in WT hosts. Overall, our study demonstrates the functional importance of cyp11a2 in early oogenesis and differentiation of SSCs.


Assuntos
Células-Tronco Germinativas Adultas/fisiologia , Diferenciação Celular/fisiologia , Enzima de Clivagem da Cadeia Lateral do Colesterol/fisiologia , Oócitos/crescimento & desenvolvimento , Proteínas de Peixe-Zebra/fisiologia , Peixe-Zebra , Animais , Proteína 9 Associada à CRISPR , Enzima de Clivagem da Cadeia Lateral do Colesterol/genética , Feminino , Expressão Gênica , Masculino , Mutagênese Sítio-Dirigida , Mutação , Oogênese/fisiologia , Comportamento Sexual Animal , Proteínas de Peixe-Zebra/genética
16.
Mar Biotechnol (NY) ; 22(5): 613-619, 2020 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-32880080

RESUMO

Teleost fish can synthesize one of the major omega-3 long-chain polyunsaturated fatty acids (n-3 LC-PUFAs), docosahexaenoic acid (DHA, 22:6n-3), from dietary α-linolenic acid (ALA; 18:3n-3), via elongase of very long-chain fatty acid (Elovl) and fatty acid desaturase (Fads). However, it remains unclear which elongase is primarily responsible for the endogenous synthesis of DHA. Here, in this study, the knockout models of the two major elongases, Elovl2 and Elovl5, were generated by CRISPR/Cas9 approach in zebrafish and comparatively analyzed. The homozygous mutants were validated by Sanger sequencing, mutation-mediated PCR, and whole-mount in situ hybridization analysis of the endogenous target genes. Compared with wild-type (WT) counterparts, the content of DHA was significantly reduced by 67.1% (P < 0.05) in the adult liver and by 91.7% (P < 0.01) in the embryo at 3-day post-fertilization (dpf) of the elovl2 mutant, but not of the elovl5 mutant. Further study revealed that elovl2 and fads2 was upregulated by 9.9-fold (P < 0.01) and 9.7-fold (P < 0.01) in the elovl5 mutant, and elovl5 and fads2 were upregulated by 15.1-fold (P < 0.01) and 21.5-fold (P < 0.01) in the elovl2 mutant. Our study indicates that although both Elovl2 and Elovl5 have the elongase activity toward C20, the upregulation of elovl2 could completely replace the genetic depletion of elovl5, but upregulation of elovl5 could not compensate the endogenous deficiency of elovl2 in mediating DHA synthesis. In conclusion, the endogenous synthesis of DHA in is mediated by Elovl2 but not Elovl5 in zebrafish and a DHA-deficient genetic model of zebrafish has been generated.


Assuntos
Ácidos Docosa-Hexaenoicos/biossíntese , Ácidos Graxos Dessaturases/genética , Elongases de Ácidos Graxos/genética , Peixe-Zebra/metabolismo , Animais , Sistemas CRISPR-Cas , Ácidos Docosa-Hexaenoicos/genética , Embrião não Mamífero/metabolismo , Proteínas de Peixes/genética , Técnicas de Inativação de Genes , Fígado/metabolismo , Peixe-Zebra/genética
17.
PLoS Biol ; 18(7): e3000561, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32702011

RESUMO

Maternal ß-catenin activity is essential and critical for dorsal induction and its dorsal activation has been thoroughly studied. However, how the maternal ß-catenin activity is suppressed in the nondorsal cells remains poorly understood. Nanog is known to play a central role for maintenance of the pluripotency and maternal -zygotic transition (MZT). Here, we reveal a novel role of Nanog as a strong repressor of maternal ß-catenin signaling to safeguard the embryo against hyperactivation of maternal ß-catenin activity and hyperdorsalization. In zebrafish, knockdown of nanog at different levels led to either posteriorization or dorsalization, mimicking zygotic or maternal activation of Wnt/ß-catenin activities, and the maternal zygotic mutant of nanog (MZnanog) showed strong activation of maternal ß-catenin activity and hyperdorsalization. Although a constitutive activator-type Nanog (Vp16-Nanog, lacking the N terminal) perfectly rescued the MZT defects of MZnanog, it did not rescue the phenotypes resulting from ß-catenin signaling activation. Mechanistically, the N terminal of Nanog directly interacts with T-cell factor (TCF) and interferes with the binding of ß-catenin to TCF, thereby attenuating the transcriptional activity of ß-catenin. Therefore, our study establishes a novel role for Nanog in repressing maternal ß-catenin activity and demonstrates a transcriptional switch between ß-catenin/TCF and Nanog/TCF complexes, which safeguards the embryo from global activation of maternal ß-catenin activity.


Assuntos
Desenvolvimento Embrionário/genética , Proteína Homeobox Nanog/metabolismo , Transativadores/metabolismo , Proteínas de Peixe-Zebra/metabolismo , Peixe-Zebra/embriologia , Peixe-Zebra/genética , beta Catenina/metabolismo , Animais , Padronização Corporal/genética , Núcleo Celular/metabolismo , Feminino , Regulação da Expressão Gênica no Desenvolvimento , Técnicas de Silenciamento de Genes , Masculino , Mutação/genética , Proteína Homeobox Nanog/química , Proteína Homeobox Nanog/genética , Ligação Proteica , Transporte Proteico , Proteínas Repressoras/metabolismo , Transcrição Gênica , Via de Sinalização Wnt/genética , Proteínas de Peixe-Zebra/química , Proteínas de Peixe-Zebra/genética , Zigoto/metabolismo
18.
Endocrinology ; 161(6)2020 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-32222764

RESUMO

Androgen is essential for male development and cortisol is involved in reproduction in fishes. However, the in vivo roles of cortisol and specific androgens such as 11-ketotestosterone (11-KT) in reproductive development need to be described with genetic models. Zebrafish cyp11c1 encodes 11ß-hydroxylase, which is essential for the biosynthesis of 11-KT and cortisol. In this study, we generated a zebrafish mutant of cyp11c1 (cyp11c1-/-) and utilized it to clarify the roles of 11-KT and cortisol in sexual development and reproduction. The cyp11c1-/- fish had smaller genital papilla and exhibited defective natural mating but possessed mature gametes and were found at a sex ratio comparable to the wildtype control. The cyp11c1-/- males showed delayed and prolonged juvenile ovary-to-testis transition and displayed defective spermatogenesis at adult stage, which could be rescued by treatment with 11-ketoandrostenedione (11-KA) at certain stages. Specifically, during testis development of cyp11c1-/- males, the expression of insl3, cyp17a1, and amh was significantly decreased, suggesting that 11-KT is essential for the development and function of Leydig cells and Sertoli cells. Further, spermatogenesis-related dmrt1 was subsequently downregulated, leading to insufficient spermatogenesis. The cyp11c1-/- females showed a reduction in egg spawning and a failure of in vitro germinal vesicle breakdown, which could be partially rescued by cortisol treatment. Taken together, our study reveals that zebrafish Cyp11c1 is not required for definite sex differentiation but is essential for juvenile ovary-to-testis transition, Leydig cell development, and spermatogenesis in males through 11-KT, and it is also involved in oocyte maturation and ovulation in females through cortisol.


Assuntos
Hidrocortisona/metabolismo , Desenvolvimento Sexual , Esteroide 11-beta-Hidroxilase/genética , Testosterona/análogos & derivados , Proteínas de Peixe-Zebra/genética , Peixe-Zebra/crescimento & desenvolvimento , Peixe-Zebra/genética , Animais , Feminino , Regulação da Expressão Gênica no Desenvolvimento , Técnicas de Inativação de Genes , Masculino , Ovário/crescimento & desenvolvimento , Ovário/metabolismo , Reprodução , Esteroide 11-beta-Hidroxilase/metabolismo , Testículo/crescimento & desenvolvimento , Testículo/metabolismo , Testosterona/metabolismo , Peixe-Zebra/fisiologia , Proteínas de Peixe-Zebra/metabolismo
19.
PLoS Genet ; 15(9): e1008306, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-31545789

RESUMO

During vertebrate early embryogenesis, the ventral development is directed by the ventral-to-dorsal activity gradient of the bone morphogenetic protein (BMP) signaling. As secreted ligands, the extracellular traffic of BMP has been extensively studied. However, it remains poorly understood that how BMP ligands are secreted from BMP-producing cells. In this work, we show the dominant role of Marcksb controlling the secretory process of Bmp2b via interaction with Hsp70 in vivo. We firstly carefully characterized the role of Marcksb in promoting BMP signaling during dorsoventral axis formation through knockdown approach. We then showed that Marcksb cell autonomously regulates the trafficking of Bmp2b from producing cell to the extracellular space and both the total and the extracellular Bmp2b was decreased in Marcksb-deficient embryos. However, neither the zygotic mutant of marcksb (Zmarcksb) nor the maternal zygotic mutant of marcksb (MZmarcksb) showed any defects of dorsalization. In contrast, the MZmarcksb embryos even showed increased BMP signaling activity as measured by expression of BMP targets, phosphorylated Smad1/5/9 levels and imaging of Bmp2b, suggesting that a phenomenon of "genetic over-compensation" arose. Finally, we revealed that the over-compensation effects of BMP signaling in MZmarcksb was achieved through a sequential up-regulation of MARCKS-family members Marcksa, Marcksl1a and Marcksl1b, and MARCKS-interacting protein Hsp70.3. We concluded that the Marcksb modulates BMP signaling through regulating the secretory pathway of Bmp2b.


Assuntos
Proteína Morfogenética Óssea 2/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Proteínas de Peixe-Zebra/metabolismo , Peixe-Zebra/fisiologia , Animais , Padronização Corporal/fisiologia , Embrião não Mamífero/metabolismo , Desenvolvimento Embrionário/genética , Desenvolvimento Embrionário/fisiologia , Feminino , Proteínas de Choque Térmico HSP70/metabolismo , Via Secretória , Transdução de Sinais , Fator de Crescimento Transformador beta/metabolismo , Peixe-Zebra/metabolismo
20.
Mar Biotechnol (NY) ; 21(2): 217-228, 2019 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-30671659

RESUMO

Teleost sex differentiation largely depends on the number of undifferentiated germ cells. Here, we describe the generation and characterization of a novel transgenic zebrafish line, Tg(piwil1:egfp-UTRnanos3)ihb327Tg, which specifically labels the whole lifetime of germ cells, i.e., from primordial germ cells (PGCs) at shield stage to the oogonia and early stage of oocytes in the ovary and to the early stage of spermatogonia, spermatocyte, and spermatid in the testis. By using this transgenic line, we carefully observed the numbers of PGCs from early embryonic stage to juvenile stage and the differentiation process of ovary and testis. The numbers of PGCs became variable at as early as 1 day post-fertilization (dpf). Interestingly, the embryos with a high amount of PGCs mainly developed into females and the ones with a low amount of PGCs mainly developed into males. By using transient overexpression and transgenic induction of PGC-specific bucky ball (buc), we further proved that induction of abundant PGCs at embryonic stage promoted later ovary differentiation and female development. Taken together, we generate an ideal transgenic line Tg(piwil1:egfp-UTRnanos3)ihb327Tg which can visualize zebrafish germline for a lifetime, and we have utilized this line to study germ cell development and gonad differentiation of teleost and to demonstrate that the increase of PGC number at embryonic stage promotes female differentiation.


Assuntos
Desenvolvimento Embrionário , Diferenciação Sexual , Peixe-Zebra/embriologia , Animais , Animais Geneticamente Modificados , Embrião não Mamífero/embriologia , Feminino , Expressão Gênica , Células Germinativas/citologia , Proteínas Luminescentes , Masculino , Ovário/crescimento & desenvolvimento , Testículo/crescimento & desenvolvimento , Peixe-Zebra/genética , Proteínas de Peixe-Zebra
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...