Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 48
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Molecules ; 29(10)2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38792189

RESUMO

A novel ternary eutectic salt, NaNO3-KNO3-Na2SO4 (TMS), was designed and prepared for thermal energy storage (TES) to address the issues of the narrow temperature range and low specific heat of solar salt molten salt. The thermo-physical properties of TMS-2, such as melting point, decomposition temperature, fusion enthalpy, density, viscosity, specific heat capacity and volumetric thermal energy storage capacity (ETES), were determined. Furthermore, a comparison of the thermo-physical properties between commercial solar salt and TMS-2 was carried out. TMS-2 had a melting point 6.5 °C lower and a decomposition temperature 38.93 °C higher than those of solar salt. The use temperature range of TMS molten salt was 45.43 °C larger than that of solar salt, which had been widened about 13.17%. Within the testing temperature range, the average specific heat capacity of TMS-2 (1.69 J·K-1·g-1) was 9.03% higher than that of solar salt (1.55 J·K-1·g-1). TMS-2 also showed higher density, slightly higher viscosity and higher ETES. XRD, FTIR and Raman spectra SEM showed that the composition and structure of the synthesized new molten salt were different, which explained the specific heat capacity increasing. Molecular dynamic (MD) simulation was performed to explore the different macroscopic properties of solar salt and TMS at the molecular level. The MD simulation results suggested that cation-cation and cation-anion interactions became weaker as the temperature increased and the randomness of molecular motion increased, which revealed that the interaction between the cation cluster and anion cluster became loose. The stronger interaction between Na-SO4 cation-anion clusters indicated that TMS-2 molten salt had a higher specific heat capacity than solar salt. The result of the thermal stability analysis indicated that the weight losses of solar salt and TMS-2 at 550 °C were only 27% and 53%, respectively. Both the simulation and experimental study indicated that TMS-2 is a promising candidate fluid for solar power generation systems.

2.
Pharmaceuticals (Basel) ; 17(2)2024 Jan 24.
Artigo em Inglês | MEDLINE | ID: mdl-38399368

RESUMO

Xiao Cheng Qi (XCQ) decoction, an ancient Chinese herbal mixture, has been used in treating slow-transit constipation (STC) for years. The underlying action mechanism in relieving the clinical symptoms is unclear. Several lines of evidence point to a strong link between constipation and gut microbiota. Short-chain fatty acids (SCFAs) and microbial metabolites have been shown to affect 5-HT synthesis by activating the GPR43 receptor localized on intestinal enterochromaffin cells, since 5-HT receptors are known to influence colonic peristalsis. The objective of this study was to evaluate the efficacy of XCQ in alleviating clinical symptoms in a mouse model of STC induced by loperamide. The application of loperamide leads to a decrease in intestinal transport and fecal water, which is used to establish the animal model of STC. In addition, the relationship between constipation and gut microbiota was determined. The herbal materials, composed of Rhei Radix et Rhizoma (Rhizomes of Rheum palmatum L., Polygonaceae) 55.2 g, Magnoliae Officinalis Cortex (Barks of Magnolia officinalis Rehd. et Wils, Magnoliaceae) 27.6 g, and Aurantii Fructus Immaturus (Fruitlet of Citrus aurantium L., Rutaceae) 36.0 g, were extracted with water to prepare the XCQ decoction. The constipated mice were induced with loperamide (10 mg/kg/day), and then treated with an oral dose of XCQ herbal extract (2.0, 4.0, and 8.0 g/kg/day) two times a day. Mosapride was administered as a positive drug. In loperamide-induced STC mice, the therapeutic parameters of XCQ-treated mice were determined, i.e., (i) symptoms of constipation, composition of gut microbiota, and amount of short-chain fatty acids in feces; (ii) plasma level of 5-HT; and (iii) expressions of the GPR43 and 5-HT4 receptor in colon. XCQ ameliorated the constipation symptoms of loperamide-induced STC mice. In gut microbiota, the treatment of XCQ in STC mice increased the relative abundances of Lactobacillus, Prevotellaceae_UCG_001, Prevotellaceae_NK3B31_group, Muribaculaceae, and Roseburia in feces and decreased the relative abundances of Desulfovibrio, Tuzzerella, and Lachnospiraceae_ NK4A136_group. The levels of SCFAs in stools from the STC group were significantly lower than those the control group, and were greatly elevated via treatment with XCQ. Compared with the STC group, XCQ increased the plasma level of 5-HT and the colonic expressions of the GPR43 and 5-HT4 receptor, significantly. The underlying mechanism of XCQ in anti-constipation could be related to the modulation of gut microbiota, the increase in SCFAs, the increase in plasma 5-HT, and the colonic expressions of the GPR43 and 5-HT4 receptor. Our results indicate that XCQ is a potent natural product that could be a therapeutic strategy for constipation.

3.
Front Chem ; 11: 1253959, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37780988

RESUMO

Electrochemical energy storage technology has attracted widespread attention due to its low cost and high energy efficiency in recent years. Among the electrochemical energy storage technologies, sodium ion batteries have been widely focused due to the advantages of abundant sodium resources, low price and similar properties to lithium. In the basic structure of sodium ion battery, the electrolyte determines the electrochemical window and electrochemical performance of the battery, controls the properties of the electrode/electrolyte interface, and affects the safety of sodium ion batteries. Organic liquid electrolytes are widely used because of their low viscosity, high dielectric constant, and compatibility with common cathodes and anodes. However, there are problems such as low oxidation potential, high flammability and safety hazards. Therefore, the development of novel, low-cost, high-performance organic liquid electrolytes is essential for the commercial application of sodium ion batteries. In this paper, the basic requirements and main classifications of organic liquid electrolytes for sodium ion batteries have been introduced. The current research status of organic liquid electrolytes for sodium ion batteries has been highlighted, including compatibility with various types of electrodes and electrochemical properties such as multiplicative performance and cycling performance of electrode materials in electrolytes. The composition, formation mechanism and regulation strategies of interfacial films have been explained. Finally, the development trends of sodium ion battery electrolytes in terms of compatibility with materials, safety and stable interfacial film formation are pointed out in the future.

4.
Materials (Basel) ; 16(5)2023 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-36903140

RESUMO

The corrosion resistance of 316 stainless steel (316SS) in molten KCl-MgCl2 salts was studied through static immersion corrosion at high temperatures. Below 600 °C, the corrosion rate of 316SS increased slowly with increasing temperature. When the salt temperature rises to 700 °C, the corrosion rate of 316SS increases dramatically. The corrosion of 316SS is mainly due to the selective dissolution of Cr and Fe at high temperatures. The impurities in molten KCl-MgCl2 salts could accelerate the dissolution of Cr and Fe atoms in the grain boundary of 316SS, and purification treatment can reduce the corrosivity of KCl-MgCl2 salts. Under the experimental conditions, the diffusion rate of Cr/Fe in 316SS changed more with temperature than the reaction rate of salt impurities with Cr/Fe.

5.
Heliyon ; 9(2): e13398, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36820020

RESUMO

In this study, response surface methodology (RSM) and artificial neural network (ANN) were used to predict and validate the optimal processing method of Schizonepetae Herba Carbonisata (SHC). The highest overall desirability (OD) value of the total flavonoids content (TFC), total tannin content (TTC), and adsorption capacity (AC) were used as response values. The optimal processing technology processing time lasted 10 min at a processing temperature of 178 °C and the herbs/machine had a volume of 77 g/5 L. The Ultra Performance Liquid Chromatography/Quadrupole Time-of-Flight Mass Spectrometry (UPLC-Q-TOF-MS), combined with chemometrics, was used to investigate the changes of compounds in Schizonepetae Herba (SH) before and after being charred. A total of 104 compounds were tentatively identified in SH and 83 in SHC. Fifteen differential compounds were found between by chemometrics SH and SHC. Altogether, our findings can provide a practical approach to the processing technology of carbonizing by stir-frying SH.

6.
Nat Prod Res ; 37(20): 3395-3401, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-35574610

RESUMO

Two new phenylpropanoids (1 and 2) and one new isoflavone glycoside (3), along with nine known compounds (4 - 12), were isolated from the pod of Ceratonia siliqua L. Their chemical structures were elucidated based on extensive spectroscopic analyses (1 D and 2 D NMR, UV, IR, and HRESIMS) and compared with the literature data. In addition, all isolated compounds were evaluated in vitro for inhibitory activity against acetylcholinesterase (AChE). Compounds 4, 5, and 12 showed inhibitory activity against acetylcholinesterase (AChE) with IC50 values ranging from 15.0 to 50.2 µM.

7.
Phytomedicine ; 106: 154421, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-36054995

RESUMO

BACKGROUND: The medication of synthetic chemical is one of the main treatments for depressive disorders. Different lines of evidence reveal that a long-term exposure to anti-depressants, e.g., fluoxetine, is causing multiple-drug resistance (MDR) of gut microbiomes. The MDR bacterial strains in gut pose a threat to intestinal balance and treatment of future microbial infection. Effective strategies are thus in urgent need to prevent the anti-depressant-mediated MDR of gut microbes. PURPOSE: We aimed to investigate the potential role of Aloe vera (L.) Burm. f. (aloe; Liliaceae family) to prevent MDR of E. coli being co-cultured with fluoxetine. METHODS: The extract of A. vera was co-cultured with E. coli and fluoxetine to analyze the preventive effect of MDR. To figure out the mechanistic action, the formation of reactive oxygen species (ROS) and the expression of key biomarkers, including outer membrane proteins (OmpF and OmpC), superoxidative stress activator (SoxS) and efflux pumps (AcrA/B-TolC), were determined in E. coli being treated with fluoxetine and aloe extract. In addition, the genetic mutation of transcriptional factors of these biomarkers was determined in the fluoxetine-treated E. coli. RESULTS: The water extract of A. vera showed considerable potential to reduce the number of fluoxetine-mediated MDR colonies. The extract robustly suppressed the formation of ROS in E. coli. However, thiourea and N-acetylcysteine, two well-known antioxidants, showed no activity in preventing the formation of bacterial MDR. Additionally, A. vera extract directly affected the fluoxetine-triggered early stress response of E. coli and the expression of downstream genes. Meanwhile, A. vera extract was able to inhibit the genetic mutation of SoxR gene in E. coli, as induced by co-cultured with fluoxetine. By fractionation of the aloe extract, the ethanol precipitate, composing mainly polysaccharides, showed robust activity in preventing the fluoxetine-mediated MDR. CONCLUSION: This study therefore suggested that the extract of A. vera could be an adjuvant agent to combat bacterial MDR during anti-depressant treatment.


Assuntos
Aloe , Acetilcisteína , Resistência a Medicamentos , Escherichia coli , Etanol , Fluoxetina/farmacologia , Proteínas de Membrana , Permeabilidade , Extratos Vegetais/farmacologia , Polissacarídeos , Espécies Reativas de Oxigênio/metabolismo , Tioureia , Água
8.
Food Chem ; 397: 133840, 2022 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-35933753

RESUMO

Rhubarb is a popular food in the world with laxative effects and steamed pieces of rhubarb (SP) have been widely applied to treatment of constipation in China due to its safety and effectiveness. In the study, metabolism in vitro was conducted to study influence of gut microbiota between raw pieces of rhubarb (RP) and SP. The results showed obvious classifications in metabolic profile between RP and SP were revealed by chemometric analysis, and prompted gut microbiota affected metabolism of rhubarb. Furthermore, 16 characteristic components were identified to distinguish the differences in metabolism. Finally, quantitative analysis of 14 components were verified the regulation of gut microbiota on rhubarb and discovered concentration of components affected the rate of metabolism. The study indicated regulation by gut microbiota could be probably responsible for differences of laxative effects between RP and SP, providing new perspective for exploring mechanisms of effectiveness in clinical application for SP.


Assuntos
Microbioma Gastrointestinal , Rheum , Biotransformação , Humanos , Laxantes , Metaboloma
9.
Nat Prod Res ; 36(16): 4147-4152, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-34525866

RESUMO

A new unsaturated fatty acid trewioidesine A (1), together with seven known compounds (2 - 8) were isolated from the rhizomes of Alchornea trewioides (Benth.) Muell. Arg. Their structures were established on the basis of extensive spectroscopic data interpretation (1 D and 2 D NMR, and HRESIMS). The absolute configuration of 1 was determined by electronic circular dichroism (ECD) calculations, confirming as trewioidesine A. The functionality of isolated compounds was tested in cultured PC12 cells, a cell line from rat pheochromocytoma. Trewioidesine A was the one showing robust activity in inducing neuronal differentiation: the induction was synergized when co-applied with nerve growth factor (NGF). In addition, a neurofilament 200 (NF200) promoter-luciferase (pNF200-Luc) reporter was used to evaluate the differentiating ability in the transfected PC12 cells for the isolated compounds. Trewioidesine A exhibited a strong NF200 promoter activation, and application of trewioidesine A with low dose of NGF significantly induced the promoter activity over 50%.


Assuntos
Neoplasias das Glândulas Suprarrenais , Euphorbiaceae , Feocromocitoma , Animais , Diferenciação Celular , Ácidos Graxos Insaturados/farmacologia , Fator de Crescimento Neural/farmacologia , Células PC12 , Ratos , Rizoma
10.
Chin Med ; 15: 98, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32944064

RESUMO

BACKGROUND: Danggui Buxue Tang (DBT), an ancient Chinese herbal decoction containing Astragali Radix and Angelicae Sinensis Radix at a ratio of 5: 1, is prescribed for menopausal women. Flavonoids and its flavonoid glycosides are considered as the major active ingredients within the herbal decoction; however, their amount is not controllable during the preparation. Besides, the aglycons within DBT are believed to have better gut absorption and pharmacological efficacy. METHODS: The herbal extract of DBT was fermented with Lactobacillus plantarum. The amounts of flavonoid glucosides and its aglycones in the fermented product were analyzed by using UPLC-MS/MS. In addition, in vitro assays were employed to evaluate the efficacy of the fermented DBT in regulating the activities of α-glucosidase, α-amylase and lipase, as well as their antioxidant capacity (DPPH and T-AOC assays) and anti-glycation property (BSA-methylglyoxal, BSA-fructose, and arginine-methylglyoxal models). RESULTS: The fermentation of DBT with L. plantarum drove a completed conversion of calycosin-7-O-ß-D-glucoside and ononin to calycosin and formononetin, respectively. The chemical transformation could be probably mediated by ß-glycosidase within the fermented product. Several in vitro assays corresponding to anti-diabetic functions were compared between parental DBT against its fermented product, which included the activities against α-glucosidase, α-amylase and lipase, as well as anti-oxidation and anti-glycation. The fermented DBT showed increased activities in inhibiting α-glycosidase, suppressing DPPH radical-scavenging and anti-glycation, as compared to the original herbal product. CONCLUSION: These results suggested that DBT being fermented with the probiotic L. plantarum could pave a new direction for fermentation of herbal extract, as to strengthen its pharmacological properties in providing health benefits.

11.
Membranes (Basel) ; 10(8)2020 Aug 03.
Artigo em Inglês | MEDLINE | ID: mdl-32756455

RESUMO

This study concerns the feasibility of extracting lithium and separating aluminum from lepidolite leaching solution by nanofiltration. Four commercial nanofiltration (NF) membranes (DK, DL, NF270, and Duracid NF) were chosen to investigate ion separation performance in simulated lepidolite leaching solution. Membranes were characterized according to FT-IR, hydrophobicity, zeta potential, morphology, thickness, pore size, and hydraulic permeability to reveal the effect of membrane properties on separation. NF membranes were investigated including the retention ratio of SO42- and Li+, the separation efficiency of Li+/Al3+, and the effect of other cations (K+, Na+, Ca2+) on the separation of Li+/Al3+. The results show that DK membrane displayed the appropriate permeate flux and extremely high Li+/Al3+ separation efficiency with a separation factor of 471.3 compared with other NF membranes owing to its pore size, smooth membrane surface, and appropriate zeta potential. Overall, it is found that nanofiltration has a superior separation efficiency of lithium and aluminum, which may bring deep insights and open an avenue to offer a feasible strategy to extract lithium from lepidolite leaching solution in the future.

12.
Front Pharmacol ; 11: 526, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32410995

RESUMO

Kaempferol is a major flavonoid in Ginkgo Folium and other edible plants, which is being proposed here to have roles in angiogenesis. Angiogenesis is important in both physiological and pathological development. Here, kaempferol was shown to bind with vascular endothelial growth factor (VEGF), probably in the heparin binding domain of VEGF: this binding potentiated the angiogenic functions of VEGF in various culture models. Kaempferol potentiated the VEGF-induced cell motility in human umbilical vein endothelial cells (HUVECs), as well as the sub-intestinal vessel sprouting in zebrafish embryos and formation of microvascular in rat aortic ring. In cultured HUVECs, application of kaempferol strongly potentiated the VEGF-induced phosphorylations of VEGFR2, endothelial nitric oxide synthase (eNOS) and extracellular signal-regulated kinase (Erk) in time-dependent and concentration-dependent manners, and in parallel the VEGF-mediated expressions of matrix metalloproteinases (MMPs), MMP-2 and MMP-9, were significantly enhanced. In addition, the potentiation effect of kaempferol was revealed in VEGF-induced migration of skin cell and monocyte. Taken together, our results suggested the pharmacological roles of kaempferol in potentiating VEGF-mediated functions should be considered.

13.
Phytomedicine ; 74: 152815, 2020 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-30833146

RESUMO

BACKGROUND: According to traditional Chinese medicine (TCM) theory, the herbal property is the most important guiding principle of ancient medication in China. The classification of warm- and cold-stimulating TCM is defined mainly based on the effects of herbs in regulating body temperature; however, the underlying mechanism of such distinction has not been fully identified. METHODS: Here, four commonly used spleen-meridian herbs, Ginseng Radix and Astragali Radix as typical warm-stimulating herbs, and Nelumbinis Semen and Coicis Semen as typical cold-stimulating herbs, were selected to test their effects in regulating body temperature, as well as its triggered thermo-regulatory factors and energy related metabolites, in yeast-induced fever rats. RESULTS: The intake of Astragali Radix increased body temperature in yeast-induced fever rats; while Coicis Semen showed cooling effects in such rats. In parallel, the levels of cAMP, PGE2 and thermo-related metabolites, including choline, creatine, alanine, lactate and leucine, in the blood of yeast-induced rats were increased significantly by the intake of Astragali Radix. Oppositely, the cold-stimulating herbs, Nelumbinis Semen and Coicis Semen, showed cooling effects by increasing certain metabolites, e.g. histidine, tyrosine, lipid, myo-inositol, as well as AVP level. CONCLUSION: Here, we compared different effects of warm and cooling spleen-meridian herbs in the regulation of body temperature. By providing an intuitive comparison of thermo-regulatory factors and related metabolites after intake of selected herbs, the mechanism behind the warm and cooling effects of specific herbs were revealed.


Assuntos
Regulação da Temperatura Corporal/efeitos dos fármacos , Temperatura Corporal/efeitos dos fármacos , Medicamentos de Ervas Chinesas/farmacologia , Animais , Astragalus propinquus , Coix/química , Medicamentos de Ervas Chinesas/química , Febre/tratamento farmacológico , Febre/etiologia , Masculino , Medicina Tradicional Chinesa/métodos , Meridianos , Panax/química , Plantas Medicinais/química , Ratos Endogâmicos , Baço , Leveduras/patogenicidade
14.
J Ginseng Res ; 43(4): 517-526, 2019 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-31695560

RESUMO

BACKGROUND: The root of Panax ginseng, a member of Araliaceae family, has been used as herbal medicine and functional food in Asia for thousands of years. According to Traditional Chinese medicine, ginseng is the most widely used "Qi-invigorating" herbs, which provides tonic and preventive effects by resisting oxidative stress, influencing energy metabolism, and improving mitochondrial function. Very few reports have systematically measured cell mitochondrial bioenergetics after ginseng treatment. METHODS: Here, H9C2 cell line, a rat cardiomyoblast, was treated with ginseng extracts having extracted using solvents of different polarity, i.e., water, 50% ethanol, and 90% ethanol, and subsequently, the oxygen consumption rate in healthy and tert-butyl hydroperoxide-treated live cultures was determined by Seahorse extracellular flux analyzer. RESULTS: The 90% ethanol extracts of ginseng possessed the strongest antioxidative and tonic activities to mitochondrial respiration and therefore provided the best protective effects to H9C2 cardiomyocytes. By increasing the spare respiratory capacity of stressed H9C2 cells up to three-folds of that of healthy cells, the 90% ethanol extracts of ginseng greatly improved the tolerance of myocardial cells to oxidative damage. CONCLUSION: These results demonstrated that the low polarity extracts of ginseng could be the best extract, as compared with others, in regulating the oxygen consumption rate of cultured cardiomyocytes during mitochondrial respiration.

15.
Cancers (Basel) ; 11(12)2019 Nov 20.
Artigo em Inglês | MEDLINE | ID: mdl-31757048

RESUMO

Ginkgetin, a biflavone from Ginkgo biloba leaf, and resveratrol, a polyphenol found in grape and wine, are two phytochemicals being identified for its binding to vascular endothelial growth factor (VEGF): the binding, therefore, resulted in the alteration of the physiological roles of VEGF-mediated angiogenesis. The bindings of ginkgetin and resveratrol were proposed on different sites of VEGF, but both of them suppressed the angiogenic properties of VEGF. The suppressive activities of ginkgetin and resveratrol in VEGF-mediated angiogenesis were supported by several lines of evidence including (i) inhibiting the formation of sub-intestinal vessel in zebrafish embryos and microvascular sprouting in rat aortic ring; and (ii) suppressing the phosphorylations of VEGFR2, Akt, eNOS, and Erk as well as expressions of matrix metalloproteinases (MMPs), MMP-2, and MMP-9 in human umbilical vein endothelial cells (HUVECs). Here, we showed the synergy of ginkgetin and resveratrol in suppressing the VEGF-induced endothelial cell proliferation, migration, invasion, and tube formation. The synergy of ginkgetin and resveratrol was further illustrated in HT-29 colon cancer xenograft nude mice. Ginkgetin and resveratrol, when applied together, exerted a synergistic anti-tumor effect of 5-fluorouracil with decreasing microvessel density of tumors. In parallel, the combination of ginkgetin and resveratrol synergistically relieved the 5-fluorouracil-induced inflammatory response by suppressing expressions of COX-2 and inflammatory cytokines. Thus, the anti-angiogenic roles of ginkgetin and/or resveratrol could provide effective therapeutic strategy in cancer, similar to that of Avastin, in suppressing the VEGF-mediated angiogenesis during cancer development.

16.
Pharmacol Res ; 149: 104459, 2019 11.
Artigo em Inglês | MEDLINE | ID: mdl-31541689

RESUMO

Gut microbiota and their metabolites (short-chain fatty acids, SCFAs) are associated with the pathogenesis of rheumatoid arthritis (RA). Total Clematis triterpenoid saponins (CTSs) prepared from Clematis mandshurica Rupr. possess therapeutic benefits for arthritic diseases. However, the poor pharmacokinetic properties of CTSs have obstructed the translation of these natural agents to drugs. Here, we examined the effects of CTSs on arthritis symptoms, gut microbiota and SCFAs in rats with collagen-induced arthritis (CIA). Our results showed that the arthritis index scores of CIA rats treated with CTSs were significantly lower than those of the model group. Most importantly, CTSs moderated gut microbial dysbiosis and significantly downregulated the total SCFA concentration in CIA rats. Compared to the control group, CTSs treatment have no significant side effects on the gut microbiota and SCFA metabolism in normal rats. Two differential analyses (LEfSe and DESeq2) were combined to study the details of the changes in gut microbiome, and twenty-four marker taxa at the genus level were identified via a comparison among control, model and CIA rats treated with high doses of CTSs. In particular, the mostly significantly increased gram-negative (G-) and decreased gram-positive (G+) genera in CIA rats were well restored by CTSs. The observed SCFA concentrations demonstrated that CTSs tend to maintain the balance of the gut microbiota. The data presented herein suggest that CTSs could ameliorate arthritis-associated gut microbial dysbiosis and may be potential adjuvant drugs that could provide relief from the gastrointestinal damage caused as a side effect of commonly used drugs.


Assuntos
Artrite Experimental/tratamento farmacológico , Clematis/química , Disbiose/prevenção & controle , Ácidos Graxos Voláteis/metabolismo , Microbioma Gastrointestinal/efeitos dos fármacos , Saponinas/uso terapêutico , Triterpenos/uso terapêutico , Animais , Artrite Experimental/microbiologia , Disbiose/microbiologia , Feminino , Ratos , Ratos Wistar , Saponinas/isolamento & purificação , Triterpenos/isolamento & purificação
17.
Molecules ; 24(16)2019 Aug 08.
Artigo em Inglês | MEDLINE | ID: mdl-31398918

RESUMO

Gut microbiota play an important role in metabolism of intake saponins, and parallelly, the polysaccharides deriving from herbal products possess effects on gut microbiota. Ophiopogonis Radix is a common Chinese herb that is popularly used as functional food in China. Polysaccharide and steroidal saponin, e.g., ophiopogonin, mainly ophiopogonin D (Oph-D) and ophiopogonin D' (Oph-D'), are the major constituents in this herb. In order to reveal the role of gut microbiota in metabolizing ophiopogonin, an in vitro metabolism of Oph-D and Oph-D' by human gut microbiota, in combination with or without Ophiopogon polysaccharide, was conducted. A sensitive and reliable UPLC-MS/MS method was developed to simultaneously quantify Oph-D, Oph-D' and their final metabolites, i.e., ruscogenin and diosgenin in the broth of microbiota. An elimination of Oph-D and Oph-D' was revealed in a time-dependent manner, as well as the recognition of a parallel increase of ruscogenin and diosgenin. Ophiopogon polysaccharide was shown to stimulate the gut microbiota-induced metabolism of ophiopogonins. This promoting effect was further verified by increased activities of ß-D-glucosidase, ß-D-xylosidase, α-L-rhamnosidase and ß-D-fucosidase in the broth. This study can be extended to investigate the metabolism of steroidal saponins by gut microbiota when combined with other herbal products, especially those herbs enriched with polysaccharides.


Assuntos
Microbioma Gastrointestinal , Ophiopogon/química , Polissacarídeos/química , Saponinas/química , Cromatografia Líquida de Alta Pressão , Cromatografia Líquida , Fermentação , Glicosídeo Hidrolases/metabolismo , Humanos , Estrutura Molecular , Ophiopogon/metabolismo , Polissacarídeos/metabolismo , Saponinas/metabolismo , Espectrometria de Massas em Tandem
18.
J Pharm Biomed Anal ; 175: 112779, 2019 Oct 25.
Artigo em Inglês | MEDLINE | ID: mdl-31349212

RESUMO

The combined usage of Ginseng Radix et Rhizoma (ginseng) and Ophiopogonis Radix is common in oriental countries for thousands of years. The major active constituents of ginseng are ginsenosides, and the conversion of ginsenosides to different metabolites by gut microbiota has been reported. However, the effect of Ophiopogonis Radix, especially its polysaccharides, on the metabolism of ginsenosides by gut microbiota is not known. Here, an in vitro metabolism of ginseng extract, or ginsenosides, in combination with or without Ophiopogon polysaccharide was conducted. A sensitive and reliable UPLC-MS/MS approach using multiple reaction monitoring (MRM) in positive ion mode was developed simultaneously to quantify 22 ginsenosides in the broth of gut microbiota. After fermentation with the microbiota, 15 ginsenosides were detected and quantified, including 6 primary ginsenosides, i.e. Rb1, Rc, Rb2, Rb3, Rd and Re, and 9 metabolites, i.e. F2, Rg3, compound K, Rh2, PPD, Rg1, Rh1, Rg2 and PPT. The quantitative results therefore revealed the elimination of primary ginsenosides and the formation of their metabolites in time-dependent manners. Furthermore, Ophiopogon polysaccharide was shown to stimulate the metabolism of ginsenosides, triggered by gut microbiota. Our study can be extended to investigate the metabolism of different Panax species by gut microbiota when combining with other herbs.


Assuntos
Microbioma Gastrointestinal/efeitos dos fármacos , Ginsenosídeos/metabolismo , Ophiopogon/química , Panax/química , Polissacarídeos/farmacologia , Adulto , Cromatografia Líquida de Alta Pressão/métodos , Feminino , Humanos , Masculino , Raízes de Plantas/química , Rizoma/química , Espectrometria de Massas em Tandem
19.
Neurosci Lett ; 707: 134308, 2019 08 10.
Artigo em Inglês | MEDLINE | ID: mdl-31153972

RESUMO

Acori Tatarinowii Rhizoma (ATR, the dried rhizome of Acorus tatarinowii Schott.) is a traditional Chinese medicine widely used to treat brain diseases, e.g. depression, forgetfulness, anxiety and epilepsy. Several lines of evidence support that ATR has neuronal beneficial functions in animal models, but its action mechanism in cellular level is unknown. Here, we identified α-asarone and ß-asarone could be the major active ingredients of ATR, which, when applied onto cultured rat astrocytes, significantly stimulated the expression and secretion of neurotrophic factors, i.e. nerve growth factor (NGF), brain derived neurotrophic factor (BDNF) and glial derived neurotrophic factor (GDNF), in dose-dependent manners. These results suggested that the neuronal action of ATR, triggered by asarone, might be mediated by an increase of expression of neurotrophic factors in astrocytes, which therefore could support the clinical usage of ATR. In addition, application of PKA inhibitor, H89, in cultured astrocytes partially blocked the asarone-induced neurotrophic factor expression, suggesting the involvement of PKA signaling. The results proposed that α-asarone and ß-asarone from ATR could serve as potential candidates for drug development in neurodegenerative diseases.


Assuntos
Acorus/química , Anisóis/farmacologia , Astrócitos/efeitos dos fármacos , Medicamentos de Ervas Chinesas/química , Fatores de Crescimento Neural/metabolismo , Derivados de Alilbenzenos , Animais , Anisóis/isolamento & purificação , Astrócitos/metabolismo , Fator Neurotrófico Derivado do Encéfalo/metabolismo , Células Cultivadas , Expressão Gênica , Fator Neurotrófico Derivado de Linhagem de Célula Glial/metabolismo , Fator de Crescimento Neural/metabolismo , Ratos Sprague-Dawley , Rizoma/química
20.
J Sep Sci ; 42(15): 2500-2509, 2019 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-31115147

RESUMO

Short-chain fatty acids are currently the most studied metabolites of gut microbiota, but the analysis of them, simultaneously, is still challenging due to their unique property and wide concentration range. Here, we developed a sensitive and versatile high-performance liquid chromatography with ultraviolet detection method, using pre-column derivatization and solid-phase extraction segmental elution, for the quantification of both major and trace amounts of short-chain fatty acids in human feces. Short-chain fatty acids were converted to 3-nitrophenylhydrazine-derived analytes, and then solid-phase extraction segmental elution was used for extraction of major analytes and enrichment of trace analytes. The method validation showed limits of quantitation ˂0.04 mM, and coefficient of determination > 0.998 at a wide range of 0.04-8.0 mM. The intra- and interday precision of analytes were all within accepted criteria, and the recoveries were 96.12 to 100.75% for targeted analytes in fecal samples. This method was successfully applied in quantification of eight analytes in human feces, which therefore could provide a sensitive and versatile high-performance liquid chromatography with ultraviolet detection method for precise and accurate quantitation of short-chain fatty acids in human feces.


Assuntos
Ácidos Graxos Voláteis/análise , Fezes/química , Extração em Fase Sólida , Cromatografia Líquida de Alta Pressão , Humanos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...