Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 47
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
ISA Trans ; 145: 87-103, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38057170

RESUMO

The research investigates the fixed-time command-filtered composite adaptive neural fault-tolerant (FCCANF) control issue of strict-feedback nonlinear systems (SFNSs). There exist unknown functions and bounded disturbances in the considered systems. Radial basis function neural networks (RBFNNs) will be used in the estimate of the unknown functions. By the serial-parallel estimation models (SPEMs), the forecast biases and the track biases can change the weights of RBFNNs and the approximate characteristics of RBFNNs will be improved. Then, utilizing the novel fixed-time command filter and adaptive disturbance observers, the issue of complex explosion will be effectively solved and the external disturbance is effectively compensated. Subsequently, by utilizing the adaptive control technique, a novel FCCANF controller is developed. Additionally, we have that the system internal variables are bounded and the output variable inclines to a little interval around zero in fixed time which is not determined by the system initial variables. Eventually, numerical and practical examples are shown to prove the availability of the obtained control technique.

2.
ISA Trans ; 144: 133-144, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37977885

RESUMO

This paper studies the exponential synchronization problem for a class of delayed coupled neural networks with delay-compensatory impulsive control. A Razumikhin-type inequality involving some destabilizing delayed impulse gains and a new idea of delay-compensatory that shows two critical roles for system stability are presented, respectively. Based on the constructed inequality and the presented delay-compensatory idea, sufficient stability and synchronization criteria for globally exponential synchronization (GES) of coupled neural networks (CNNs) are presented. Compared with existing results, the uniqueness of the presented results lies in that impulse delays can be fetched and integrated to compensate for instantaneous unstable impulse dynamics caused by destabilizing gains. Moreover, constraints between system delay and impulsive delay are relaxed, and the interval of impulses no longer constrains the system delay. Comparisons and a practical application are given to demonstrate the superior performance of the presented novel control methods.

3.
IEEE Trans Cybern ; 54(2): 776-786, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38127614

RESUMO

In this article, the adaptive tracking control problem is considered for high-order stochastic nonlinear time-delay systems in fixed-time. Being different from existing results, an improved Lyapunov-Krasovskii function is designed, which can not only compensate for the time-delay term but also remove the obstacle from the high-order term. Due to the introduction of the Lyapunov-Krasovskii function into the total Lyapunov function, it makes it difficult to stabilize the controlled system within a fixed-time interval. L'Hopital's rule is used to determine the boundedness of the Lyapunov-Krasovskii function, and the fixed-time boundedness of the integral functions can be inferred. By utilizing the fixed-time Lyapunov stability theorem, it is proved that the controlled system is semi-globally practical fixed-time stable (SGPFS), all the closed-loop signals (CLSs) are bounded within the fixed-time interval, and the tracking error converges into a small region around zero. The validity of the designed scheme is substantiated via simulation results.

4.
Neural Netw ; 164: 508-520, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37201311

RESUMO

In this paper, the issue of event-triggered optimal fault-tolerant control is investigated for input-constrained nonlinear systems with mismatched disturbances. To eliminate the effect of abrupt faults and ensure the optimal performance of general nonlinear dynamics, an adaptive dynamic programming (ADP) algorithm is employed to develop a sliding mode fault-tolerant control strategy. When the system trajectories converge to the sliding-mode surface, the equivalent sliding mode dynamics is transformed into a reformulated auxiliary system with a modified cost function. Then, a single critic neural network (NN) is adopted to solve the modified Hamilton-Jacobi-Bellman (HJB) equation. In order to overcome the difficulty that arises from the persistence of excitation (PE) condition, the experience replay technique is utilized to update the critic weights. In this study, a novel control method is proposed, which can effectively eliminate the effects of abrupt faults while achieving optimal control with the minimum cost under a single network architecture. Furthermore, the closed-loop nonlinear system is proved to be uniformly ultimate boundedness based on Lyapunov stability theory. Finally, three examples are presented to verify the validity of the control strategy.


Assuntos
Algoritmos , Redes Neurais de Computação , Dinâmica não Linear
5.
IEEE Trans Cybern ; 53(9): 6017-6026, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37018634

RESUMO

This work focuses on the problem of predefined-time bipartite consensus tracking control for a class of nonlinear MASs with asymmetric full-state constraints. A predefined-time bipartite consensus tracking framework is developed, where both cooperative communication and adversarial communication among neighbor agents are implemented. Different from the finite-time and the fixed-time controller design methods for MASs, the prominent advantage of the controller design algorithm presented in this work is that our algorithm can make the followers track either the output or the opposite output of the leader within the predefined time in accordance to the user requirements. In order to obtain the desired control performance, an improved time-varying nonlinear transformed function is skillfully introduced for the first time to handle the asymmetric full-state constraints and radial basis function neural networks (RBF NNs) are employed to deal with the unknown nonlinear functions. Then, the predefined-time adaptive neural virtual control laws are constructed by using the backstepping technique, while their derivatives are estimated by the first-order sliding-mode differentiators. It is theoretically testified that the proposed control algorithm not only guarantees the bipartite consensus tracking performance of the constrained nonlinear MASs in the predefined time but also remains the boundedness of all the resulting closed-loop signals. Finally, the simulation research on a practical example shows the validity of the presented control algorithm.

6.
IEEE Trans Neural Netw Learn Syst ; 34(9): 6328-6338, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-34951856

RESUMO

This article presents a global adaptive neural-network-based control algorithm for disturbed pure-feedback nonlinear systems to achieve zero tracking error in a predefined time. Different from the traditional works that only solve the semiglobal bounded tracking problem for pure-feedback systems, this work not only achieves that the tracking error globally converges to zero but also guarantees that the convergence time can be predefined according to the user specification. In order to get the desired predefined-time controller, first, a mild semibound assumption for nonaffine functions is skillfully proposed so that the design difficulty caused by the structure of pure feedback can be easily solved. Then, we apply the property of radial basis function (RBF) neural networks (NNs) and Young's inequality to derive the upper bound of the term that contains the unknown nonlinear function and external disturbances, and the designed adaptive parameters decide the derived upper and robust control gain. Finally, the predefined-time virtual control inputs are presented whose derivatives are further estimated by utilizing finite-time differentiators. It is strictly proved that the proposed novel predefined-time controller can guarantee that the tracking error globally converges to zero within predefined time and a practical example is shown to verify the effectiveness and practicability of the proposed predefined-time control method.

7.
IEEE Trans Neural Netw Learn Syst ; 34(2): 999-1007, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-34424847

RESUMO

In this work, a neural-networks (NNs)-based adaptive asymptotic tracking control scheme is presented for a class of uncertain nonstrict feedback nonlinear systems with time-varying full-state constraints. First, we construct a novel exponentially decaying nonlinear mapping to map the constrained system states to new system states without constraints. Instead of the traditional barrier Lyapunov function methods, the feasible conditions which require the virtual control signals satisfying the constraint requirements are removed. By employing the Nussbaum design method to eliminate the effect of unknown control gains, the general assumption about the signs of the unknown control gains is relaxed. Then, the nonstrict feedback form of the system can be pulled back to the strict feedback form through the basic properties of radial basis function NNs. Simultaneously, the intermediate control signals and the desired controller are constructed by the backstepping process and the Nussbaum design method. The designed controller can ensure that all signals in the whole closed-loop system are bounded without the violation of the constraints and hold the asymptotic tracking performance. In the end, a practical example about a brush dc motor driving a one-link robot manipulator is given to illustrate the effectiveness of the proposed design scheme.

8.
IEEE Trans Cybern ; 53(5): 3253-3262, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-35724292

RESUMO

This research addresses the finite-time control problem for nonaffine stochastic nonlinear systems with actuator faults and input saturation. Specifically, a new finite-time control scheme is constructed based on the adaptive backstepping framework, with the usage of a state observer and taking advantage of the universal approximation capability of the fuzzy-logic system (FLS). The novelty of this work is that it considers the output feedback problem of a completely nonaffine stochastic system and incorporates the idea of the dynamic surface control (DSC) design. By using the Lyapunov stability theory, all the signals of the controlled system can be semiglobal finite-time stable in probability (SGFSP) while the system is imposed with multiple actuator constraints. In the meantime, the problem of "complexity explosion" is avoided. Two simulation examples are given to demonstrate the validity of the presented strategy.

9.
ISA Trans ; 134: 122-133, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-35970645

RESUMO

In the article, the adaptive composite dynamic surface neural controller design problem for nonlinear fractional-order systems (NFOSs) subject to delayed input is discussed. A fractional-order auxiliary system is first designed to solve the input-delay problem. By using the developed novel estimation models, the defined prediction errors and the states of error system can decide the weights of radial basis function neural networks (RBFNNs). During the dynamic surface controller design process, the developed fractional-order filters are designed to handle the complexity explosion problem when the classical backstepping control technique is utilized. It is shown that the designed adaptive composite neural controller ensures that all the system state variables are bounded and the tracking error of the considered system finally tends to a small neighborhood of zero. Finally, the results of the simulation explain the feasibility of the developed controller. In addition, the developed controller can also be applied to single input and single output(SISO) nonlinear systems subject to a unitary input function.

10.
ISA Trans ; 135: 476-491, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36216609

RESUMO

In this article, the problem of decentralized fuzzy adaptive control is addressed for a class of stochastic interconnected nonlinear large-scale systems including saturation and unknown disturbance. Fuzzy logic systems (FLSs) are used to estimate packaged nonlinear uncertainties. The command filter technique is presented to eliminate the "explosion of complexity" obstacle associated with the backstepping procedures and the corresponding error compensation mechanism is constructed to alleviate the effect of the errors generated by command filters. The influence of input saturation is compensated by introducing an auxiliary system. Meanwhile, an improved adaptive fuzzy decentralized controller is developed and it is able to minimize calculation time since there is no need for repeated differentiation for the virtual control laws. The presented control scheme not only assures the semi-global boundedness of all the signals in the closed-loop system, but also makes the output tracking errors reach a small neighborhood around the origin. Finally, both numerical and practical examples are provided to illustrate the efficiency and effectiveness of our theoretic result.

11.
IEEE Trans Cybern ; 53(10): 6538-6548, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-36149994

RESUMO

This article investigates the neural-network-based adaptive predefined-time tracking control problem for switched nonlinear systems. Neural networks are employed to approximate the unknown part of nonlinear functions. The finite-time differentiators are introduced to estimate the first derivative of the virtual controllers. Then, a novel adaptive predefined-time controller is proposed by utilizing the backstepping control technique and the common Lyapunov function (CLF) method. It is explained by the theoretical analysis that the developed controller guarantees that all signals of the switched closed-loop systems are bounded under arbitrary switchings and the tracking error converges to zero within the predefined time. A simulation is shown to verify the validity of the developed predefined-time control approach.

12.
IEEE Trans Cybern ; 53(10): 6562-6570, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-36219655

RESUMO

This work concentrates on the adaptive resilient dynamic surface controller design problem for uncertain nonlinear lower triangular stochastic cyber-physical systems (CPSs) subject to unknown deception attacks based on a switching threshold event-triggered mechanism. The adverse effect of deception attacks on the stochastic CPSs is that the exact system state variables become unavailable. Furthermore, it should be emphasized that the coexistence of unknown nonlinearities, stochastic perturbations, and unknown sensor and actuator attacks makes it a very difficult and challenging event to implement the control design. To get the desired controller, radial basis function (RBF) neural networks (NNs) are introduced so that the design obstacle caused from the unknown nonlinearities can be easily solved. On this basis, in order to save resources and effectively transmit, the event-triggered control scheme based on a switching threshold strategy is further considered. In the backstepping design process, the dynamic surface control (DSC) technique is presented to deal with the issue of "explosion of complexity." By skillfully designing a new coordinate transformation and the attack compensators, the problem of unknown deception attacks is successfully handled. Under our proposed control scheme, all the closed-loop signals are bounded in probability and the stabilization errors converge to an adjustable neighborhood of the origin in probability. Finally, the simulation results on the double chemical reactor show the validity of the proposed design scheme.

13.
Appl Opt ; 61(29): 8695-8703, 2022 Oct 10.
Artigo em Inglês | MEDLINE | ID: mdl-36256002

RESUMO

Digital image correlation (DIC) is an optical measurement method of material strain/displacement based on visible light illumination, which can be used for the measurement of long-term mechanical behavior. In this paper, an experimental method for analyzing high-temperature creep in FV566 steel material based on DIC was independently designed. Aiming at the problems of glass observation window medium refraction and thermal airflow disturbance in high-temperature testing, the corresponding correction methods were proposed to improve the measurement accuracy. Based on the above methods, high-temperature creep tests were carried out on three specimens with different shapes, and the strain concentration area at 600°C was calculated. Then, the influences of shape and other properties on material creep failure, stress distribution, and actual strain were investigated. Finally, the DIC calculation results were analyzed and compared with results of finite element analysis and the final fracture position of the specimen. The three results had a high degree of consistency, which verified that the proposed method can accurately measure and analyze the creep behavior of materials.

14.
Artigo em Inglês | MEDLINE | ID: mdl-35834452

RESUMO

This article studies the hierarchical sliding-mode surface (HSMS)-based adaptive optimal control problem for a class of switched continuous-time (CT) nonlinear systems with unknown perturbation under an actor-critic (AC) neural networks (NNs) architecture. First, a novel perturbation observer with a nested parameter adaptive law is designed to estimate the unknown perturbation. Then, by constructing an especial cost function related to HSMS, the original control issue is further converted into the problem of finding a series of optimal control policies. The solution to the HJB equation is identified by the HSMS-based AC NNs, where the actor and critic updating laws are developed to implement the reinforcement learning (RL) strategy simultaneously. The critic update law is designed via the gradient descent approach and the principle of standardization, such that the persistence of excitation (PE) condition is no longer needed. Based on the Lyapunov stability theory, all the signals of the closed-loop switched nonlinear systems are strictly proved to be bounded in the sense of uniformly ultimate boundedness (UUB). Finally, the simulation results are presented to verify the validity of the proposed adaptive optimal control scheme.

15.
Artigo em Inglês | MEDLINE | ID: mdl-35666791

RESUMO

The problem of adaptive neural fixed-time tracking control for high-order systems is addressed in this article. In order to handle the difficulties from the uncertain nonlinearities within the original systems, the radial basis function neural networks (RBF NNs) are introduced to approximate the unknown nonlinear functions, and the adding a power integrator is applied to overcome the obstacle from high-order terms. It is proven that all signals in the closed-loop system are bounded and the output signal can eventually converge to a small neighborhood of the reference signal. Simulation results further verify the approaches developed.

16.
Artigo em Inglês | MEDLINE | ID: mdl-35622809

RESUMO

In this article, the asymptotic tracking control problem for a class of nonlinear multi-agent systems (MASs) is researched by the combination of radial basis function neural networks (RBF NNs) and an improved dynamic surface control (DSC) technology. It's important to emphasize that the MASs studied in this article are nonlinear and nonstrict-feedback systems, where the nonlinear functions are unknown. In order to satisfy the requirement that all items in the controller must be available, the unknown nonlinearities in the system are flexibly approximated by utilizing RBF NNs technique. Moreover, the issue of ``complexity explosion'' in the backstepping procedure is handled by improving the traditional DSC technology, and meanwhile, the influences of the boundary layers caused by the filters in the DSC procedure are eliminated skillfully through the compensation terms. In addition, the relative threshold event-triggered strategy is developed for the designed controllers to reduce the waste of communication resources, where Zeno phenomenon is successfully avoided. It is observed that the new presented control strategy ensures that all the closed-loop systems variables are uniformly ultimately bounded (UUB), and furthermore all the outputs of followers are able to track the output of the leader with zero tracking errors. Finally, the simulation results are presented to show the effectiveness of the obtained design scheme.

17.
Artigo em Inglês | MEDLINE | ID: mdl-35617187

RESUMO

In this research, the adaptive neural network consensus control problem is addressed for a class of non-affine multiagent systems (MASs) with actuator faults and stochastic disturbances. To overcome difficulties associated with actuator faults and uncertain functions of the designed MAS, a neural network fault-tolerant control scheme is developed. Moreover, an adaptive backstepping controller is developed to solve the non-affine appearance in multiagent stochastic non-affine systems using the mean value theorem. Being different from the existing control methods, the developed adaptive fixed-time control approach can ensure that the outputs of all followers track the reference signal synchronously in the fixed time, and all signals of the controlled system are semi-globally uniformly fixed-time stable. The simulation results confirm that the presented control strategy is effective in achieving control goals.

18.
IEEE Trans Cybern ; 52(7): 6959-6971, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-33449903

RESUMO

In this article, finite-time-prescribed performance-based adaptive fuzzy control is considered for a class of strict-feedback systems in the presence of actuator faults and dynamic disturbances. To deal with the difficulties associated with the actuator faults and external disturbance, an adaptive fuzzy fault-tolerant control strategy is introduced. Different from the existing controller design methods, a modified performance function, which is called the finite-time performance function (FTPF), is presented. It is proved that the presented controller can ensure all the signals of the closed-loop system are bounded and the tracking error converges to a predetermined region in finite time. The effectiveness of the presented control scheme is verified through the simulation results.

19.
IEEE Trans Cybern ; 52(9): 8804-8817, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-33661747

RESUMO

This article is devoted to an adaptive tracking control problem for nonlinear systems with input deadzone and saturation, whose virtual control coefficients include the known and unknown terms. A novel smooth function is first introduced to approximate the input nonlinearities. By utilizing an auxiliary variable and the Nussbaum gain technique, an improved real control signal is constructed to handle the uncertainties of the virtual control coefficients and input nonlinearities. Furthermore, an adaptive tracking controller is constructed and applied to the attitude control of a quadrotor, which guarantees the boundedness of all the signals in the resulting closed-loop system. Finally, both stability analysis and simulation results validate the effectiveness of the developed control strategy.

20.
IEEE Trans Neural Netw Learn Syst ; 33(11): 6690-6700, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-34077374

RESUMO

This study proposes the time-/event-triggered adaptive neural control strategies for the asymptotic tracking problem of a class of uncertain nonlinear systems with full-state constraints. First, we design a time-triggered strategy. The effect caused by the residuals of the estimation via radial basis function (RBF) neural networks (NNs), and the reasonable upper bounds on the first derivative of the reference signal and the derivative of each virtual control, can be eliminated by designing appropriate adaptive laws and utilizing the basic properties of RBF NNs. Moreover, the construction of the barrier Lyapunov functions (BLFs) in this work ensures the compliance of the full-state constraints and also holds the asymptotic output tracking performance. Then, based on the time-triggered strategy, we further design a relative threshold event-triggered strategy. The proposed event-triggered adaptive neural controller can solve the main control objective of this work, that is: 1) the full-state constraint requirements of the system are not violated and 2) the output signal asymptotically tracks the reference signal. Compared with the traditional method, the event-triggered strategy can improve the utilization of communication channels and resources and has greater practical significance. Finally, an example of single-link robot under the proposed two strategies illustrates the validity of the constructed controllers.


Assuntos
Redes Neurais de Computação , Robótica , Dinâmica não Linear , Simulação por Computador , Incerteza
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...