Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Genome Res ; 28(9): 1405-1414, 2018 09.
Artigo em Inglês | MEDLINE | ID: mdl-30108179

RESUMO

RNA/DNA hybrids form when RNA hybridizes with its template DNA generating a three-stranded structure known as the R-loop. Knowledge of how they form and resolve, as well as their functional roles, is limited. Here, by pull-down assays followed by mass spectrometry, we identified 803 proteins that bind to RNA/DNA hybrids. Because these proteins were identified using in vitro assays, we confirmed that they bind to R-loops in vivo. They include proteins that are involved in a variety of functions, including most steps of RNA processing. The proteins are enriched for K homology (KH) and helicase domains. Among them, more than 300 proteins preferred binding to hybrids than double-stranded DNA. These proteins serve as starting points for mechanistic studies to elucidate what RNA/DNA hybrids regulate and how they are regulated.


Assuntos
Proteínas de Ligação a DNA/química , DNA/química , Proteínas de Ligação a RNA/química , RNA/química , Linhagem Celular , DNA/metabolismo , Proteínas de Ligação a DNA/metabolismo , Humanos , Conformação de Ácido Nucleico , Ligação Proteica , Domínios Proteicos , RNA/metabolismo , Proteínas de Ligação a RNA/metabolismo
2.
Mol Cell ; 69(3): 426-437.e7, 2018 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-29395064

RESUMO

R-loops are three-stranded nucleic acid structures found abundantly and yet often viewed as by-products of transcription. Studying cells from patients with a motor neuron disease (amyotrophic lateral sclerosis 4 [ALS4]) caused by a mutation in senataxin, we uncovered how R-loops promote transcription. In ALS4 patients, the senataxin mutation depletes R-loops with a consequent effect on gene expression. With fewer R-loops in ALS4 cells, the expression of BAMBI, a negative regulator of transforming growth factor ß (TGF-ß), is reduced; that then leads to the activation of the TGF-ß pathway. We uncovered that genome-wide R-loops influence promoter methylation of over 1,200 human genes. DNA methyl-transferase 1 favors binding to double-stranded DNA over R-loops. Thus, in forming R-loops, nascent RNA blocks DNA methylation and promotes further transcription. Hence, our results show that nucleic acid structures, in addition to sequences, influence the binding and activity of regulatory proteins.


Assuntos
Regulação da Expressão Gênica/genética , Regiões Promotoras Genéticas , RNA Helicases/genética , RNA Helicases/metabolismo , Esclerose Lateral Amiotrófica/genética , Esclerose Lateral Amiotrófica/metabolismo , DNA/genética , DNA/ultraestrutura , DNA (Citosina-5-)-Metiltransferase 1/metabolismo , DNA Helicases , Metilação de DNA/genética , Humanos , Proteínas de Membrana/metabolismo , Enzimas Multifuncionais , Mutação , Regiões Promotoras Genéticas/genética , Processamento de Proteína Pós-Traducional , RNA/genética , RNA/ultraestrutura , Motivos de Ligação ao RNA , Ativação Transcricional/genética , Fator de Crescimento Transformador beta/metabolismo
3.
Genome Res ; 26(11): 1544-1554, 2016 11.
Artigo em Inglês | MEDLINE | ID: mdl-27638543

RESUMO

Alterations of RNA sequences and structures, such as those from editing and alternative splicing, result in two or more RNA transcripts from a DNA template. It was thought that in yeast, RNA editing only occurs in tRNAs. Here, we found that Saccharomyces cerevisiae have all 12 types of RNA-DNA sequence differences (RDDs) in the mRNA. We showed these sequence differences are propagated to proteins, as we identified peptides encoded by the RNA sequences in addition to those by the DNA sequences at RDD sites. RDDs are significantly enriched at regions with R-loops. A screen of yeast mutants showed that RDD formation is affected by mutations in genes regulating R-loops. Loss-of-function mutations in ribonuclease H, senataxin, and topoisomerase I that resolve RNA-DNA hybrids lead to increases in RDD frequency. Our results demonstrate that RDD is a conserved process that diversifies transcriptomes and proteomes and provide a mechanistic link between R-loops and RDDs.


Assuntos
Pareamento Incorreto de Bases , DNA Fúngico/genética , RNA Fúngico/genética , RNA Mensageiro/genética , Saccharomyces cerevisiae/genética , DNA Topoisomerases Tipo I/genética , DNA Fúngico/química , Mutação com Perda de Função , RNA Fúngico/química , RNA Mensageiro/química , Ribonuclease H/genética , Proteínas de Saccharomyces cerevisiae/genética
5.
Genome Res ; 26(6): 799-811, 2016 06.
Artigo em Inglês | MEDLINE | ID: mdl-27197211

RESUMO

Complex regulation of gene expression in mammals has evolved from simpler eukaryotic systems, yet the mechanistic features of this evolution remain elusive. Here, we compared the transcriptional landscapes of the distantly related budding and fission yeast. We adapted the Precision Run-On sequencing (PRO-seq) approach to map the positions of RNA polymerase active sites genome-wide in Schizosaccharomyces pombe and Saccharomyces cerevisiae. Additionally, we mapped preferred sites of transcription initiation in each organism using PRO-cap. Unexpectedly, we identify a pause in early elongation, specific to S. pombe, that requires the conserved elongation factor subunit Spt4 and resembles promoter-proximal pausing in metazoans. PRO-seq profiles in strains lacking Spt4 reveal globally elevated levels of transcribing RNA Polymerase II (Pol II) within genes in both species. Messenger RNA abundance, however, does not reflect the increases in Pol II density, indicating a global reduction in elongation rate. Together, our results provide the first base-pair resolution map of transcription elongation in S. pombe and identify divergent roles for Spt4 in controlling elongation in budding and fission yeast.


Assuntos
Fatores de Alongamento de Peptídeos/genética , Proteínas de Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/genética , Proteínas de Schizosaccharomyces pombe/genética , Schizosaccharomyces/genética , Evolução Molecular , Regulação Fúngica da Expressão Gênica , Nucleossomos/enzimologia , Nucleossomos/genética , Regiões Promotoras Genéticas , RNA Polimerase II/fisiologia , Transcrição Gênica
6.
Cell Rep ; 6(5): 906-15, 2014 Mar 13.
Artigo em Inglês | MEDLINE | ID: mdl-24561252

RESUMO

RNA sequences are expected to be identical to their corresponding DNA sequences. Here, we found all 12 types of RNA-DNA sequence differences (RDDs) in nascent RNA. Our results show that RDDs begin to occur in RNA chains ~55 nt from the RNA polymerase II (Pol II) active site. These RDDs occur so soon after transcription that they are incompatible with known deaminase-mediated RNA-editing mechanisms. Moreover, the 55 nt delay in appearance indicates that they do not arise during RNA synthesis by Pol II or as a direct consequence of modified base incorporation. Preliminary data suggest that RDD and R-loop formations may be coupled. These findings identify sequence substitution as an early step in cotranscriptional RNA processing.


Assuntos
DNA/metabolismo , RNA Polimerase II/metabolismo , RNA/metabolismo , Domínio Catalítico , Técnicas de Cultura de Células , DNA/genética , Expressão Gênica , Humanos , RNA/genética , Transcrição Gênica
7.
Cell Rep ; 5(3): 849-60, 2013 Nov 14.
Artigo em Inglês | MEDLINE | ID: mdl-24183664

RESUMO

Adenosine deaminases acting on RNA (ADARs) convert adenosine to inosine, which is then recognized as guanosine. To study the role of ADAR proteins in RNA editing and gene regulation, we sequenced and compared the DNA and RNA of human B cells. Then, we followed up the findings experimentally with siRNA knockdown and RNA and protein immunoprecipitations. The results uncovered over 60,000 A-to-G editing sites and several thousand genes whose expression levels are influenced by ADARs. Of these ADAR targets, 90% were identified. Our results also reveal that ADAR regulates transcript stability and gene expression through interaction with HuR (ELAVL1). These findings extend the role of ADAR and show that it cooperates with other RNA-processing proteins to regulate the sequence and expression of transcripts in human cells.


Assuntos
Adenosina Desaminase/genética , Adenosina Desaminase/metabolismo , Regulação da Expressão Gênica , Edição de RNA/fisiologia , RNA/genética , RNA/metabolismo , Linfócitos B/fisiologia , Proteínas ELAV/genética , Proteínas ELAV/metabolismo , Proteína Semelhante a ELAV 1 , Humanos , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Proteínas de Ligação a RNA , Transfecção
8.
Science ; 333(6038): 53-8, 2011 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-21596952

RESUMO

The transmission of information from DNA to RNA is a critical process. We compared RNA sequences from human B cells of 27 individuals to the corresponding DNA sequences from the same individuals and uncovered more than 10,000 exonic sites where the RNA sequences do not match that of the DNA. All 12 possible categories of discordances were observed. These differences were nonrandom as many sites were found in multiple individuals and in different cell types, including primary skin cells and brain tissues. Using mass spectrometry, we detected peptides that are translated from the discordant RNA sequences and thus do not correspond exactly to the DNA sequences. These widespread RNA-DNA differences in the human transcriptome provide a yet unexplored aspect of genome variation.


Assuntos
DNA/genética , Variação Genética , Genoma Humano , RNA Mensageiro/genética , Adulto , Idoso , Sequência de Aminoácidos , Linfócitos B , Sequência de Bases , Linhagem Celular , Córtex Cerebral/citologia , DNA/química , Éxons , Etiquetas de Sequências Expressas , Fibroblastos , Perfilação da Expressão Gênica , Genótipo , Humanos , Espectrometria de Massas , Pessoa de Meia-Idade , Dados de Sequência Molecular , Polimorfismo de Nucleotídeo Único , Biossíntese de Proteínas , Proteínas/química , Proteoma/química , RNA Mensageiro/química , Análise de Sequência de DNA , Análise de Sequência de RNA , Pele/citologia , Regiões não Traduzidas
9.
Mol Cell Biol ; 29(10): 2532-45, 2009 May.
Artigo em Inglês | MEDLINE | ID: mdl-19273586

RESUMO

Sir3, a component of the transcriptional silencing complex in the yeast Saccharomyces cerevisiae, has an N-terminal BAH domain that is crucial for the protein's silencing function. Previous work has shown that the N-terminal alanine residue of Sir3 (Ala2) and its acetylation play an important role in silencing. Here we show that the silencing defects of Sir3 Ala2 mutants can be suppressed by mutations in histones H3 and H4, specifically, by H3 D77N and H4 H75Y mutations. Additionally, a mutational analysis demonstrates that three separate regions of the Sir3 BAH domain are important for its role in silencing. Many of these BAH mutations also can be suppressed by the H3 D77N and H4 H75Y mutations. In agreement with the results of others, in vitro experiments show that the Sir3 BAH domain can interact with partially purified nucleosomes. The silencing-defective BAH mutants are defective for this interaction. These results, together with the previously characterized interaction between the C-terminal region of Sir3 and the histone H3/H4 tails, suggest that Sir3 utilizes multiple domains to interact with nucleosomes.


Assuntos
Regulação Fúngica da Expressão Gênica , Nucleossomos/metabolismo , Saccharomyces cerevisiae/genética , Proteínas Reguladoras de Informação Silenciosa de Saccharomyces cerevisiae/química , Proteínas Reguladoras de Informação Silenciosa de Saccharomyces cerevisiae/genética , Sequência de Aminoácidos , Animais , Análise Mutacional de DNA , Inativação Gênica , Histonas/genética , Histonas/metabolismo , Modelos Moleculares , Dados de Sequência Molecular , Mutação , Fenótipo , Estrutura Terciária de Proteína , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/metabolismo , Saccharomyces cerevisiae/metabolismo , Proteínas Reguladoras de Informação Silenciosa de Saccharomyces cerevisiae/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...