Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Environ Sci Technol ; 37(19): 4500-6, 2003 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-14572107

RESUMO

Acid mine drainage (AMD), which is caused by the biological oxidation of sulfidic materials, frequently contains arsenic in the form of arsenite, As(III), and/or arsenate, As(V), along with much higher concentrations of dissolved iron. The present work is directed toward the removal of arsenic from synthetic AMD by raising the pH of the solution by electrochemical reduction of H+ to elemental hydrogen and coprecipitation of arsenic with iron(III) hydroxide, following aeration of the catholyte. Electrolysis was carried out at constant current using two-compartment cells separated with a cation exchange membrane. Four different AMD model systems were studied: Fe(III)/As(V), Fe(III)/As(III), Fe(II)/As(V), and Fe(II)/As(III) with the initial concentrations for Fe(III) 260 mg/L, Fe(II) 300 mg/L, As(V), and As(III) 8 mg/L. Essentially quantitative removal of arsenic and iron was achieved in all four systems, and the results were independent of whether the pH was adjusted electrochemically or by the addition of NaOH. Current efficiencies were approximately 85% when the pH of the effluent was 4-7. Residual concentrations of arsenic were close to the drinking water standard proposed by the World Health Organization (10 microg/L), far below the mine waste effluent standard (500 microg/L).


Assuntos
Arsênio/isolamento & purificação , Mineração , Purificação da Água/métodos , Arsênio/química , Precipitação Química , Eletroquímica , Compostos Férricos/química , Concentração de Íons de Hidrogênio , Saúde Pública , Organização Mundial da Saúde
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...