Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nat Commun ; 15(1): 2705, 2024 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-38538616

RESUMO

Strong field ionization injects a transient vacancy in the atom which is entangled to the outgoing photoelectron. When the electron is finally detached, the ion is populated at different excited states with part of coherence information lost. The preserved coherence of matter after interacting with intense short pulses has important consequences on the subsequent nonequilibrium evolution and energy relaxation. Here we employ attosecond transient absorption spectroscopy to measure the time-delay of resonant transitions of krypton vacancy during their creation. We have observed that the absorptions by the two spin-orbit split states are modulated at different paces when varying the time-delay between the near-infrared pumping pulse and the attosecond probing pulse. It is shown that the coupling of the ions with the remaining field leads to a suppression of ionic coherence. Comparison between theory and experiments uncovers that coherent Raman coupling induces time-delay between the resonant absorptions, which provides insight into laser-ion interactions enriching attosecond chronoscopy.

2.
Opt Express ; 31(26): 43224-43233, 2023 Dec 18.
Artigo em Inglês | MEDLINE | ID: mdl-38178421

RESUMO

Efficient characterization method for broadband attosecond pulses has become more and more essential, since attosecond pulses with bandwidth spanning few-hundreds electron-volts have been generated. Here we propose a fast phase retrieval algorithm for broadband attosecond pulse characterization with an omega oscillation filtering technique. We introduce a new error function to improve the accuracy of the retrieved phases. More importantly, it can be solved by the steepest descent methods with iterative algorithm, which is much faster than genetic algorithm adopted previously. An experimental spectrogram for isolated attosecond pulses with photon energy covering 52-127 eV and a pulse width of 71 as was successfully retrieved with this method as demonstrated. The proposed technique will help provide real-time feedback on atto-chirp compensation for ultrashort isolated attosecond pulse generation.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...