Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 312
Filtrar
1.
Acta Pharmacol Sin ; 2024 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-38956416

RESUMO

Abnormal accumulation of hyperphosphorylated tau protein plays a pivotal role in a collection of neurodegenerative diseases named tauopathies, including Alzheimer's disease (AD). We have recently conceptualized the design of hetero-bifunctional chimeras for selectively promoting the proximity between tau and phosphatase, thus specifically facilitating tau dephosphorylation and removal. Here, we sought to optimize the construction of tau dephosphorylating-targeting chimera (DEPTAC) and obtained a new chimera D14, which had high efficiency in reducing tau phosphorylation both in cell and tauopathy mouse models, while showing limited cytotoxicity. Moreover, D14 ameliorated neurodegeneration in primary cultured hippocampal neurons treated with toxic tau-K18 fragments, and improved cognitive functions of tauopathy mice. These results suggested D14 as a cost-effective drug candidate for the treatment of tauopathies.

2.
J Alzheimers Dis ; 2024 Jul 19.
Artigo em Inglês | MEDLINE | ID: mdl-39058442

RESUMO

Background: The prevalence of Alzheimer's disease (AD) is increasing, therefore, identifying biomarkers to predict those vulnerable to AD is imperative. Type 2 diabetes (T2D) serves as an independent risk factor for AD. Early prediction of T2D patients who may be more susceptible to AD, so as to achieve early intervention, is of great significance to reduce the prevalence of AD. Objective: To establish periphery biomarkers that could predict conversion of T2D into pre-AD-like cognitive decline. Methods: A follow-up study was carried out from 159 T2D patients at baseline. The correlations of cognitive states (by MMSE score) with multi-periphery biomarkers, including APOE genotype, plasma amyloid-ß level, platelet GSK-3ß activity, and olfactory score were analyzed by logistic regression. ROC curve was used for establishing the prediction model. Additionally, MRI acquired from 38 T2D patients for analyzing the correlation among cognitive function, biomarkers and brain structure. Results: Compared with the patients who maintained normal cognitive functions during the follow-up period, the patients who developed MCI showed worse olfactory function, higher platelet GSK-3ß activity, and higher plasma Aß42/Aß40 ratio. We conducted a predictive model which T2D patients had more chance of suffering from pre-AD-like cognitive decline. The MRI data revealed MMSE scores were positively correlated with brain structures. However, platelet GSK-3ß activity was negatively correlated with brain structures. Conclusions: Elevated platelet GSK-3ß activity and plasma Aß42/Aß40 ratio with reduced olfactory function are correlated with pre-AD-like cognitive decline in T2D patients, which used for predicting which T2D patients will convert into pre-AD-like cognitive decline in very early stage.

3.
CNS Neurosci Ther ; 30(7): e14886, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-39072940

RESUMO

BACKGROUND: Oxidative stress is a well-known pathological factor driving neuronal loss and age-related neurodegenerative diseases. Melatonin, coenzyme Q10 and lecithin are three common nutrients with an antioxidative capacity. Here, we examined the effectiveness of them administrated individually and in combination in protecting against oxidative stress-induced neuronal death in vitro, and neurodegenerative conditions such as Alzheimer's disease and associated deficits in vivo. METHODS: Mouse neuroblastoma Neuro-2a (N2a) cells were exposed with H2O2 for 6 h, and subsequently treated with melatonin, coenzyme Q10, and lecithin alone or in combination for further 24 h. Cell viability was assessed using the CCK-8 assay. Eight-week-old male mice were intraperitoneally injected with D-(+)-galactose for 10 weeks and administrated with melatonin, coenzyme Q10, lecithin, or in combination for 5 weeks starting from the sixth week, followed by behavioral tests to assess the effectiveness in mitigating neurological deficits, and biochemical assays to explore the underlying mechanisms. RESULTS: Exposure to H2O2 significantly reduced the viability of N2a cells and increased oxidative stress and tau phosphorylation, all of which were alleviated by treatment with melatonin, coenzyme Q10, lecithin alone, and, most noticeably, by combined treatment. Administration of mice with D-(+)-galactose-induced oxidative stress and tau phosphorylation, brain aging, impairments in learning and memory, anxiety- and depression-like behaviors, and such detrimental effects were mitigated by melatonin, coenzyme Q10, lecithin alone, and, most consistently, by combined treatment. CONCLUSIONS: These results suggest that targeting oxidative stress via supplementation of antioxidant nutrients, particularly in combination, is a better strategy to alleviate oxidative stress-mediated neuronal loss and brain dysfunction due to age-related neurodegenerative conditions.


Assuntos
Antioxidantes , Peróxido de Hidrogênio , Neurônios , Estresse Oxidativo , Ubiquinona , Animais , Estresse Oxidativo/efeitos dos fármacos , Camundongos , Ubiquinona/análogos & derivados , Ubiquinona/farmacologia , Ubiquinona/administração & dosagem , Masculino , Antioxidantes/farmacologia , Peróxido de Hidrogênio/toxicidade , Neurônios/efeitos dos fármacos , Neurônios/patologia , Linhagem Celular Tumoral , Melatonina/farmacologia , Melatonina/uso terapêutico , Sobrevivência Celular/efeitos dos fármacos , Sobrevivência Celular/fisiologia , Proteínas tau/metabolismo , Fármacos Neuroprotetores/farmacologia , Galactose/toxicidade , Quimioterapia Combinada
6.
J Alzheimers Dis ; 99(4): 1303-1316, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38759018

RESUMO

Background: Anxiety and social withdrawal are highly prevalent among patients with Alzheimer's disease (AD). However, the neural circuit mechanisms underlying these symptoms remain elusive, and there is a need for effective prevention strategies. Objective: This study aims to elucidate the neural circuitry mechanisms underlying social anxiety in AD. Methods: We utilized 5xFAD mice and conducted a series of experiments including optogenetic manipulation, Tandem Mass Tag-labeled proteome analysis, behavioral assessments, and immunofluorescence staining. Results: In 5xFAD mice, we observed significant amyloid-ß (Aß) accumulation in the anterior part of basolateral amygdala (aBLA). Behaviorally, 6-month-old 5xFAD mice displayed excessive social avoidance during social interaction. Concurrently, the pathway from aBLA to ventral hippocampal CA1 (vCA1) was significantly activated and exhibited a disorganized firing patterns during social interaction. By optogenetically inhibiting the aBLA-vCA1 pathway, we effectively improved the social ability of 5xFAD mice. In the presence of Aß accumulation, we identified distinct changes in the protein network within the aBLA. Following one month of administration of Urolithin A (UA), we observed significant restoration of the abnormal protein network within the aBLA. UA treatment also attenuated the disorganized firings of the aBLA-vCA1 pathway, leading to an improvement in social ability. Conclusions: The aBLA-vCA1 circuit is a vulnerable pathway in response to Aß accumulation during the progression of AD and plays a crucial role in Aß-induced social anxiety. Targeting the aBLA-vCA1 circuit and UA administration are both effective strategies for improving the Aß-impaired social ability.


Assuntos
Peptídeos beta-Amiloides , Complexo Nuclear Basolateral da Amígdala , Região CA1 Hipocampal , Cumarínicos , Camundongos Transgênicos , Animais , Camundongos , Peptídeos beta-Amiloides/metabolismo , Região CA1 Hipocampal/metabolismo , Região CA1 Hipocampal/efeitos dos fármacos , Complexo Nuclear Basolateral da Amígdala/metabolismo , Complexo Nuclear Basolateral da Amígdala/efeitos dos fármacos , Cumarínicos/farmacologia , Doença de Alzheimer/metabolismo , Masculino , Comportamento Social , Modelos Animais de Doenças , Ansiedade/metabolismo , Interação Social/efeitos dos fármacos , Vias Neurais/efeitos dos fármacos , Optogenética
7.
MedComm (2020) ; 5(4): e540, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38606360

RESUMO

Senile plaque, composed of amyloid ß protein (Aß) aggregates, is a critical pathological feature in Alzheimer's disease (AD), leading to cognitive dysfunction. However, how Aß aggregates exert age-dependent toxicity and temporal cognitive dysfunction in APP/PS1 mice remains incompletely understood. In this study, we investigated AD pathogenesis and dynamic alterations in lysosomal pathways within the hippocampus of age-gradient male mice using transcriptome sequencing, molecular biology assays, and histopathological analyses. We observed high levels of ß-amyloid precursor protein (APP) protein expression in the hippocampus at an early stage and age-dependent Aß deposition. Transcriptome sequencing revealed the enrichment of differential genes related to the lysosome pathway. Furthermore, the protein expression of ATP6V0d2 and CTSD associated with lysosomal functions exhibited dynamic changes with age, increasing in the early stage and decreasing later. Similar age-dependent patterns were observed for the endosome function, autophagy pathway, and SGK1/FOXO3a pathway. Nissl and Golgi staining in the hippocampal region showed age-dependent neuronal loss and synaptic damage, respectively. These findings clearly define the age-gradient changes in the autophagy-lysosome system, the endosome/lysosome system, and the SGK1/FOXO3a pathway in the hippocampus of APP/PS1 mice, providing new perspectives and clues for understanding the possible mechanisms of AD, especially the transition from compensatory to decompensated state.

8.
Signal Transduct Target Ther ; 9(1): 105, 2024 Apr 29.
Artigo em Inglês | MEDLINE | ID: mdl-38679634

RESUMO

Impaired brain glucose metabolism is an early indicator of Alzheimer's disease (AD); however, the fundamental mechanism is unknown. In this study, we found a substantial decline in isocitrate dehydrogenase 3ß (IDH3ß) levels, a critical tricarboxylic acid cycle enzyme, in AD patients and AD-transgenic mice's brains. Further investigations demonstrated that the knockdown of IDH3ß induced oxidation-phosphorylation uncoupling, leading to reduced energy metabolism and lactate accumulation. The resulting increased lactate, a source of lactyl, was found to promote histone lactylation, thereby enhancing the expression of paired-box gene 6 (PAX6). As an inhibitory transcription factor of IDH3ß, the elevated PAX6 in turn inhibited the expression of IDH3ß, leading to tau hyperphosphorylation, synapse impairment, and learning and memory deficits resembling those seen in AD. In AD-transgenic mice, upregulating IDH3ß and downregulating PAX6 were found to improve cognitive functioning and reverse AD-like pathologies. Collectively, our data suggest that impaired oxidative phosphorylation accelerates AD progression via a positive feedback inhibition loop of IDH3ß-lactate-PAX6-IDH3ß. Breaking this loop by upregulating IDH3ß or downregulating PAX6 attenuates AD neurodegeneration and cognitive impairments.


Assuntos
Doença de Alzheimer , Isocitrato Desidrogenase , Fator de Transcrição PAX6 , Animais , Feminino , Humanos , Masculino , Camundongos , Doença de Alzheimer/genética , Doença de Alzheimer/patologia , Doença de Alzheimer/metabolismo , Retroalimentação Fisiológica , Isocitrato Desidrogenase/genética , Isocitrato Desidrogenase/metabolismo , Camundongos Transgênicos , Fator de Transcrição PAX6/genética , Fator de Transcrição PAX6/metabolismo
9.
Eur J Neurosci ; 59(10): 2732-2747, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38501537

RESUMO

Elevated serum homocysteine (Hcy) level is a risk factor for Alzheimer's disease (AD) and accelerates cell aging. However, the mechanism by which Hcy induces neuronal senescence remains largely unknown. In this study, we observed that Hcy significantly promoted senescence in neuroblastoma 2a (N2a) cells with elevated ß-catenin and Kelch-like ECH-associated protein 1 (KEAP1) levels. Intriguingly, Hcy promoted the interaction between KEAP1 and the Wilms tumor gene on the X chromosome (WTX) while hampering the ß-catenin-WTX interaction. Mechanistically, Hcy attenuated the methylation level of the KEAP1 promoter CpG island and activated KEAP1 transcription. However, a slow degradation rate rather than transcriptional activation contributed to the high level of ß-catenin. Hcy-upregulated KEAP1 competed with ß-catenin to bind to WTX. Knockdown of both ß-catenin and KEAP1 attenuated Hcy-induced senescence in N2a cells. Our data highlight a crucial role of the KEAP1-ß-catenin pathway in Hcy-induced neuronal-like senescence and uncover a promising target for AD treatment.


Assuntos
Senescência Celular , Homocisteína , Proteína 1 Associada a ECH Semelhante a Kelch , Neuroblastoma , Ubiquitinação , beta Catenina , beta Catenina/metabolismo , Senescência Celular/efeitos dos fármacos , Senescência Celular/fisiologia , Animais , Homocisteína/farmacologia , Homocisteína/metabolismo , Proteína 1 Associada a ECH Semelhante a Kelch/metabolismo , Camundongos , Linhagem Celular Tumoral , Ubiquitinação/efeitos dos fármacos , Neuroblastoma/metabolismo , Humanos , Neurônios/metabolismo , Neurônios/efeitos dos fármacos
10.
Mil Med Res ; 11(1): 16, 2024 Mar 11.
Artigo em Inglês | MEDLINE | ID: mdl-38462603

RESUMO

BACKGROUND: Episodic memory loss is a prominent clinical manifestation of Alzheimer's disease (AD), which is closely related to tau pathology and hippocampal impairment. Due to the heterogeneity of brain neurons, the specific roles of different brain neurons in terms of their sensitivity to tau accumulation and their contribution to AD-like social memory loss remain unclear. Therefore, further investigation is necessary. METHODS: We investigated the effects of AD-like tau pathology by Tandem mass tag proteomic and phosphoproteomic analysis, social behavioural tests, hippocampal electrophysiology, immunofluorescence staining and in vivo optical fibre recording of GCaMP6f and iGABASnFR. Additionally, we utilized optogenetics and administered ursolic acid (UA) via oral gavage to examine the effects of these agents on social memory in mice. RESULTS: The results of proteomic and phosphoproteomic analyses revealed the characteristics of ventral hippocampal CA1 (vCA1) under both physiological conditions and AD-like tau pathology. As tau progressively accumulated, vCA1, especially its excitatory and parvalbumin (PV) neurons, were fully filled with mislocated and phosphorylated tau (p-Tau). This finding was not observed for dorsal hippocampal CA1 (dCA1). The overexpression of human tau (hTau) in excitatory and PV neurons mimicked AD-like tau accumulation, significantly inhibited neuronal excitability and suppressed distinct discrimination-associated firings of these neurons within vCA1. Photoactivating excitatory and PV neurons in vCA1 at specific rhythms and time windows efficiently ameliorated tau-impaired social memory. Notably, 1 month of UA administration efficiently decreased tau accumulation via autophagy in a transcription factor EB (TFEB)-dependent manner and restored the vCA1 microcircuit to ameliorate tau-impaired social memory. CONCLUSION: This study elucidated distinct protein and phosphoprotein networks between dCA1 and vCA1 and highlighted the susceptibility of the vCA1 microcircuit to AD-like tau accumulation. Notably, our novel findings regarding the efficacy of UA in reducing tau load and targeting the vCA1 microcircuit may provide a promising strategy for treating AD in the future.


Assuntos
Doença de Alzheimer , Humanos , Masculino , Camundongos , Animais , Doença de Alzheimer/metabolismo , Doença de Alzheimer/patologia , Camundongos Transgênicos , Proteômica , Hipocampo/metabolismo , Hipocampo/patologia , Transtornos da Memória/metabolismo
11.
Cell Biosci ; 14(1): 22, 2024 Feb 12.
Artigo em Inglês | MEDLINE | ID: mdl-38347638

RESUMO

Protein post-translational modifications (PPTMs) refer to a series of chemical modifications that occur after the synthesis of protein. Proteins undergo different modifications such as phosphorylation, acetylation, ubiquitination, and so on. These modifications can alter the protein's structure, function, and interaction, thereby regulating its biological activity. In neurodegenerative diseases, several proteins undergo abnormal post-translational modifications, which leads to aggregation and abnormal deposition of protein, thus resulting in neuronal death and related diseases. For example, the main pathological features of Alzheimer's disease are the aggregation of beta-amyloid protein and abnormal phosphorylation of tau protein. The abnormal ubiquitination and loss of α-synuclein are related to the onset of Parkinson's disease. Other neurodegenerative diseases such as Huntington's disease, amyotrophic lateral sclerosis, and so on are also connected with abnormal PPTMs. Therefore, studying the abnormal PPTMs in neurodegenerative diseases is critical for understanding the mechanism of these diseases and the development of significant therapeutic strategies. This work reviews the implications of PPTMs in neurodegenerative diseases and discusses the relevant therapeutic strategies.

12.
Sci Bull (Beijing) ; 69(8): 1137-1152, 2024 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-38341350

RESUMO

Abnormal hyperphosphorylation and accumulation of tau protein play a pivotal role in neurodegeneration in Alzheimer's disease (AD) and many other tauopathies. Selective elimination of hyperphosphorylated tau is promising for the therapy of these diseases. We have conceptualized a strategy, named dephosphorylation-targeting chimeras (DEPTACs), for specifically hijacking phosphatases to tau to debilitate its hyperphosphorylation. Here, we conducted the step-by-step optimization of each constituent motif to generate DEPTACs with reasonable effectiveness in facilitating the dephosphorylation and subsequent clearance of pathological tau. Specifically, for one of the selected chimeras, D16, we demonstrated its significant efficiency in rescuing the neurodegeneration caused by neurotoxic K18-tau seeds in vitro. Moreover, intravenous administration of D16 also alleviated tau pathologies in the brain and improved memory deficits in AD mice. These results suggested DEPTACs as targeted modulators of tau phosphorylation, which hold therapeutic potential for AD and other tauopathies.


Assuntos
Doença de Alzheimer , Tauopatias , Camundongos , Animais , Doença de Alzheimer/tratamento farmacológico , Proteínas tau/genética , Tauopatias/tratamento farmacológico , Fosforilação , Encéfalo/metabolismo
14.
J Diabetes ; 16(1): e13470, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37700547

RESUMO

AIM: Both the activation of glycogen synthase kinase-3ß (GSK-3ß) and the presence of ApoE ε4 genotype have been found to respectively correlate with cognitive decline in patients with type 2 diabetes mellitus (T2DM), who further show a high incidence of developing Alzheimer's disease. However, the relationship between ApoE ε4 and GSK-3ß in the cognitive impairment of T2DM patients remains unclear. METHODS: ApoE genotypes and platelet GSK-3ß level were measured in 1139 T2DM patients recruited from five medical centers in Wuhan, China. Cognitive functions were assessed by Mini-Mental State Examination (MMSE). The association and the relationships among apolipoprotein E (ApoE) genotypes, GSK-3ß activity and cognitive function were analyzed by regression and mediating effect analyses, respectively. RESULTS: T2DM patients with ApoE ε4 but not ApoE ε2 haplotype showed poorer cognitive function and elevated platelet GSK-3ß activity, when using ApoE ε3 as reference. The elevation of GSK-3ß activity was positively correlated the diabetes duration, as well as plasma glycated hemoglobin (HbA1c) and glucose levels. Moreover, correlation and regression analysis also revealed significant pairwise correlations among GSK-3ß activity, ApoE gene polymorphism and cognitive function. Lastly, using Baron and Kenny modeling, we unveiled a mediative role of GSK-3ß activity between ApoE ε4 and cognitive impairment. CONCLUSION: We reported here that the upregulation of GSK-3ß activity mediates the exacerbation of cognitive impairment by ApoE ε4-enhanced cognitive impairment in T2DM patients, suggesting GSK-3ß inhibitors as promising drugs for preserving cognitive function in T2DM patients, especially to those with ApoE ε4 genotype.


Assuntos
Disfunção Cognitiva , Diabetes Mellitus Tipo 2 , Humanos , Alelos , Apolipoproteína E4/genética , Apolipoproteínas E/genética , Disfunção Cognitiva/genética , Estudos Transversais , Diabetes Mellitus Tipo 2/complicações , Diabetes Mellitus Tipo 2/genética , Genótipo , Glicogênio Sintase Quinase 3 beta/genética
15.
Exp Neurol ; 373: 114657, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38141802

RESUMO

Neuronal neurofibrillary tangles containing Tau hyperphosphorylation proteins are a typical pathological marker of Alzheimer's disease (AD). The level of tangles in neurons correlates positively with severe dementia. However, how Tau induces cognitive dysfunction is still unknown, which leads to a lack of effective treatments for AD. Metal ions deposition occurs with tangles in AD brain autopsy. Reduced metal ion can improve the pathology of AD. To explore whether abnormally phosphorylated Tau causes metal ion deposition, we overexpressed human full-length Tau (hTau) in the hippocampal CA3 area of mice and primary cultured hippocampal neurons (CPHN) and found that Tau accumulation induced iron deposition and activated calcineurin (CaN), which dephosphorylates glycogen synthase kinase 3 beta (GSK3ß), mediating Tau hyperphosphorylation. Simultaneous activation of CaN dephosphorylates cyclic-AMP response binding protein (CREB), leading to synaptic deficits and memory impairment, as shown in our previous study; this seems to be a vicious cycle exacerbating tauopathy. In the current study, we developed a new metal ion chelator that displayed a significant inhibitory effect on Tau phosphorylation and memory impairment by chelating iron ions in vivo and in vitro. These findings provide new insight into the mechanism of memory impairment induced by Tau accumulation and develop a novel potential treatment for tauopathy in AD.


Assuntos
Doença de Alzheimer , Tauopatias , Humanos , Animais , Camundongos , Camundongos Transgênicos , Doença de Alzheimer/metabolismo , Proteínas tau/metabolismo , Tauopatias/patologia , Transtornos da Memória/tratamento farmacológico , Transtornos da Memória/etiologia , Quelantes/farmacologia , Quelantes/uso terapêutico , Íons , Ferro , Fosforilação , Glicogênio Sintase Quinase 3 beta/metabolismo
16.
Aging (Albany NY) ; 15(23): 14172-14191, 2023 Dec 12.
Artigo em Inglês | MEDLINE | ID: mdl-38095632

RESUMO

The main pathological changes of Alzheimer's disease (AD), a progressive neurodegenerative disorder, include senile plaque (deposited by amyloid beta), neurofibrillary tangle (formed by paired helical filaments composed of hyperphosphorylated tau), and massive loss of neurons. Currently there is a lack of ideal drugs to halt AD progression. Gypenosides (GPs), a kind of natural product, possesses potential therapeutic effects for neurodegenerative diseases, including AD. However, the specific role and mechanism of GPs for AD remain unclear. In the current study, we used staurosporine (STP), an inducer of apoptosis and causing tau hyperphosphorylation, to mimic AD models, and explored the role and mechanism of Gypenoside IX (one of the extracts of Gynostemma, GP for short name in our experiments) in STP treated primary hippocampal neurons and rats. We found STP not only increased apoptosis and tau hyperphosphorylation, but also significantly increased Aß production, resulting in synaptic dysfunction and cognitive decline in mimic AD models by STP. GP was found to rescue apoptosis and cognitive impairments caused by STP treatment. Moreover, GP recovered the decreased synaptic proteins PSD95, Synaptophysin and GluR2, and blocked dendritic spine loss. Interestingly, GP decreased the STP induced tau hyperphosphorylation at different sites including S-199, S-202, T-205, T-231, S-262, S-396, and S-404, and at the same time decreased Aß production through down-regulation of BACE1 and PS1. These effects in STP treated primary hippocampal neurons and rats were accompanied with a restoration of AKT/GSK-3ß signaling axis with GP treatment, supporting that dysregulation of AKT/GSK-3ß pathway might be involved in STP related AD pathogenesis. The results from our research proved that GP might be a potential candidate compound to reduce neuronal damage and prevent the cognitive decline in AD.


Assuntos
Doença de Alzheimer , Disfunção Cognitiva , Ratos , Animais , Doença de Alzheimer/patologia , Glicogênio Sintase Quinase 3 beta/metabolismo , Peptídeos beta-Amiloides/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Secretases da Proteína Precursora do Amiloide/metabolismo , Proteínas tau/metabolismo , Fosforilação , Ácido Aspártico Endopeptidases/metabolismo , Disfunção Cognitiva/tratamento farmacológico , Cognição
17.
Transl Neurodegener ; 12(1): 51, 2023 11 10.
Artigo em Inglês | MEDLINE | ID: mdl-37950283

RESUMO

BACKGROUND: Intraneuronal accumulation of hyperphosphorylated tau is a defining hallmark of Alzheimer's disease (AD). However, mouse models imitating AD-exclusive neuronal tau pathologies are lacking. METHODS: We generated a new tet-on transgenic mouse model expressing truncated human tau N1-368 (termed hTau368), a tau fragment increased in the brains of AD patients and aged mouse brains. Doxycycline (dox) was administered in drinking water to induce hTau368 expression. Immunostaining and Western blotting were performed to measure the tau level. RNA sequencing was performed to evaluate gene expression, and several behavioral tests were conducted to evaluate mouse cognitive functions, emotion and locomotion. RESULTS: Dox treatment for 1-2 months at a young age induced overt and reversible human tau accumulation in the brains of hTau368 transgenic mice, predominantly in the hippocampus. Meanwhile, the transgenic mice exhibited AD-like high level of tau phosphorylation, glial activation, loss of mature neurons, impaired hippocampal neurogenesis, synaptic degeneration and cognitive deficits. CONCLUSIONS: This study developed a well-characterized and easy-to-use tool for the investigations and drug development for AD and other tauopathies.


Assuntos
Doença de Alzheimer , Tauopatias , Animais , Humanos , Camundongos , Doença de Alzheimer/metabolismo , Hipocampo/metabolismo , Camundongos Transgênicos , Proteínas tau/genética , Proteínas tau/metabolismo , Tauopatias/genética , Tauopatias/metabolismo , Tauopatias/patologia
18.
J Biol Chem ; 299(12): 105462, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37977223

RESUMO

The accumulation of abnormal Tau protein is a common feature of various neurodegenerative diseases. Truncated Tau, resulting from cleavage by asparaginyl endopeptidase (AEP, δ-secretase), promotes its own phosphorylation and aggregation. Our study focused on understanding the regulatory mechanisms of AEP activation and its interaction with other proteins. We discovered that c-Src plays a critical role in mediating the activation and polyubiquitination of AEP in response to epidermal growth factor stimulation. In addition, we investigated the involvement of tumor necrosis factor receptor-associated factor 6 (Traf6), an E3 ligase, in the regulation of AEP levels and its interaction with c-Src. Knockdown of Traf6 effectively inhibited c-Src-induced AEP activation. To gain further insights into the molecular mechanisms, we employed mass spectrometry to identify the specific tyrosine residues of Traf6 that are phosphorylated by c-Src. By mutating these phosphorylation sites to phenylalanine, we disrupted Traf6-mediated polyubiquitination and subsequently observed the inactivation of AEP. This finding suggests that the phosphorylation of Traf6 by c-Src is crucial for AEP activation. Pharmacological inhibition of c-Src reduced the phosphorylation of Traf6 and inhibited AEP activation in neurons derived from human-induced pluripotent stem cells. Conditional knockout of Traf6 in neurons prevented c-Src-induced AEP activation and subsequent Tau truncation in vivo. Moreover, phosphorylation of Traf6 is highly correlated with AEP activation, Tau368 and pathological Tau (AT8) in Alzheimer's disease brain. Overall, our study elucidates the role of c-Src in regulating AEP-cleaved Tau through phosphorylating Traf6. Targeting the c-Src-Traf6 pathway may hold potential for the treatment of Alzheimer's disease and other tauopathies.


Assuntos
Cisteína Endopeptidases , Fator 6 Associado a Receptor de TNF , Ubiquitina-Proteína Ligases , Quinases da Família src , Proteínas tau , Animais , Humanos , Camundongos , Doença de Alzheimer/metabolismo , Doença de Alzheimer/patologia , Cisteína Endopeptidases/metabolismo , Fosforilação , Quinases da Família src/antagonistas & inibidores , Quinases da Família src/metabolismo , Proteínas tau/metabolismo , Fator 6 Associado a Receptor de TNF/química , Fator 6 Associado a Receptor de TNF/metabolismo , Ubiquitina-Proteína Ligases/metabolismo , Ativação Enzimática , Fenilalanina , Ubiquitinação
19.
Neuroscience ; 526: 196-203, 2023 08 21.
Artigo em Inglês | MEDLINE | ID: mdl-37419407

RESUMO

Tau protein hyperphosphorylation and formation of intracellular neurofibrillary tangles (NFTs) are one of the histopathological hallmarks of Alzheimer's disease (AD) and positively correlated with the severity of AD symptoms. NFTs contain a large number of metal ions that play an important role in regulating tau protein phosphorylation and AD progression. Extracellular tau induces primary phagocytosis of stressed neurons and neuronal loss by activating microglia. Here, we studied the effects of a multi-metal ion chelator, DpdtpA, on tau-induced microglial activation and inflammatory responses and the underlying mechanisms. Treatment with DpdtpA attenuated the increase in the expression of NF-κB and production of inflammatory cytokines, IL-1ß, IL-6 and IL-10, in rat microglial cells induced by expression of human tau40 proteins. Treatment with DpdtpA also suppressed tau protein expression and phosphorylation. Moreover, treatment with DpdtpA prevented tau-induced activation of glycogen synthase kinase-3ß (GSK-3ß) and inhibition of phosphatidylinositol-3-hydroxy kinase (PI3K)/AKT. Collectively, these results show that DpdtpA can attenuate tau phosphorylation and inflammatory responses of microglia by regulating the PI3K/AKT/GSK-3ß signal pathways, providing a new option to alleviate neuroinflammation for the treatment of AD.


Assuntos
Doença de Alzheimer , Proteínas tau , Ratos , Humanos , Animais , Proteínas tau/metabolismo , Fosfatidilinositol 3-Quinase/metabolismo , Fosfatidilinositol 3-Quinase/farmacologia , Fosforilação , Microglia/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Glicogênio Sintase Quinase 3 beta/metabolismo , Transdução de Sinais , Doença de Alzheimer/metabolismo , Quelantes/farmacologia
20.
J Neurochem ; 166(2): 389-402, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37319115

RESUMO

C9orf72-derived dipeptide repeats (DPRs) proteins have been regarded as the pathogenic cause of neurodegeneration in amyotrophic lateral sclerosis and frontotemporal dementia (C9-ALS/FTD). As the most toxic DPRs in C9-ALS/FTD, poly-proline-arginine (poly-PR) is associated with the stability and accumulation of p53, which consequently induces neurodegeneration. However, the exact molecular mechanism via which C9orf72 poly-PR stabilizes p53 remains unclear. In this study, we showed that C9orf72 poly-PR induces not only neuronal damage but also p53 accumulation and p53 downstream gene activation in primary neurons. C9orf72 (PR)50 also slows down p53 protein turnover without affecting the p53 transcription level and thus promotes its stability in N2a cells. Interestingly, the ubiquitin-proteasome system but not the autophagy function was impaired in (PR)50 transfected N2a cells, resulting in defective p53 degradation. Moreover, we found that (PR)50 induces mdm2 mistranslocation from the nucleus to the cytoplasm and competitively binds to p53, reducing mdm2-p53 interactions in the nucleus in two different (PR)50 transfected cells. Our data strongly indicate that (PR)50 reduces mdm2-p53 interactions and causes p53 to escape from the ubiquitin-proteasome system, promoting its stability and accumulation. Inhibiting or at least downregulating (PR)50 binding with p53 may be therapeutically exploited for the treatment of C9-ALS/FTD.


Assuntos
Esclerose Lateral Amiotrófica , Demência Frontotemporal , Humanos , Esclerose Lateral Amiotrófica/metabolismo , Complexo de Endopeptidases do Proteassoma/metabolismo , Demência Frontotemporal/genética , Demência Frontotemporal/metabolismo , Ubiquitina/metabolismo , Proteína C9orf72/genética , Proteína C9orf72/metabolismo , Proteína Supressora de Tumor p53/genética , Proteína Supressora de Tumor p53/metabolismo , Citoplasma/metabolismo , Dipeptídeos/genética , Expansão das Repetições de DNA
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...