Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 2.093
Filtrar
1.
Endocrine ; 2024 Jun 06.
Artigo em Inglês | MEDLINE | ID: mdl-38844608

RESUMO

PURPOSE: High-density lipoprotein cholesterol (HDL-c) plays an important role in tumorigenesis in several endocrine-related cancers. Few studies have shown the effect of non-HDL-c in malignant tumors. The present study aimed to identify the association between non-HDL-c and high-grade pancreatic neuroendocrine neoplasms (PNENs). METHODS: A total of 197 PNEN patients who underwent surgery were analyzed retrospectively. Clinical and histopathological features, such as patients' age and sex, tumor location and size, tumor grade, the level of serum total cholesterol (TC), triglyceride (TG), high-density lipoprotein cholesterol (HDL-c), low-density lipoprotein cholesterol (LDL-c) and fasting plasma-glucose levels were obtained. Non-HDL-c was calculated as total cholesterol - HDL-c. The relationships between those features and high-grade PNENs were identified using logistic regression analysis. RESULTS: Among the 197 patients with PNENs, a lower HDL-c level was more common seen in patients with poorly differentiated PNENs than in those with well-differentiated PNENs (P < 0.05). The non-HDL-c/HDL-c ratio was greater in patients with poorly differentiated PNENs than in those with well-differentiated PNENs (P < 0.01). Similarly, a greater proportion of patients with a non-HDL-c/HDL-c ratio larger than 5 was found in patients with poorly differentiated PNENs than in those with well-differentiation PNENs (P < 0.01). Multivariate logistic analysis showed that the non-HDL-c/HDL-c ratio was positively associated with poorly differentiated PNENs (odds ratio (OR) = 1.45, 95% conference interval (CI):1.13-1.87). Similarly, the risk of poorly differentiated PNENs increased significantly in patients with a non-HDL-c/HDL-c greater than 5 (OR = 14.13, 95%CI: 2.98-66.89). The risk of high-grade PNENs increased in patients with a high non-HDL-c/HDL-c ratio (OR = 1.27, 95% CI: 1.04-1.55), and the risk also increased markedly when the ratio was greater than 5 (OR = 5.00, 95%CI: 1.28-19.49). CONCLUSIONS: A high ratio of non-HDL-c/HDL-c was associated with high-grade PNENs or poorly differentiated PNENs.

2.
Anal Chem ; 2024 Jun 06.
Artigo em Inglês | MEDLINE | ID: mdl-38845359

RESUMO

Extracellular vesicle (EV) molecular phenotyping offers enormous opportunities for cancer diagnostics. However, the majority of the associated studies adopted biomarker-based unimodal analysis to achieve cancer diagnosis, which has high false positives and low precision. Herein, we report a multimodal platform for the high-precision diagnosis of bladder cancer (BCa) through a multispectral 3D DNA machine in combination with a multimodal machine learning (ML) algorithm. The DNA machine was constructed using magnetic microparticles (MNPs) functionalized with aptamers that specifically identify the target of interest, i.e., five protein markers on bladder-cancer-derived urinary EVs (uEVs). The aptamers were hybridized with DNA-stabilized silver nanoclusters (DNA/AgNCs) and a G-quadruplex/hemin complex to form a sensing module. Such a DNA machine ensured multispectral detection of protein markers by fluorescence (FL), inductively coupled plasma mass spectrometry (ICP-MS), and UV-vis absorption (Abs). The obtained data sets then underwent uni- or multimodal ML for BCa diagnosis to compare the analytical performance. In this study, urine samples were obtained from our prospective cohort (n = 45). Our analytical results showed that the 3D DNA machine provided a detection limit of 9.2 × 103 particles mL-1 with a linear range of 4 × 104 to 5 × 107 particles mL-1 for uEVs. Moreover, the multimodal data fusion model exhibited an accuracy of 95.0%, a precision of 93.1%, and a recall rate of 93.2% on average, while those of the three types of unimodal models were no more than 91%. The elevated diagnosis precision by using the present fusion platform offers a perspective approach to diminishing the rate of misdiagnosis and overtreatment of BCa.

3.
Front Microbiol ; 15: 1302907, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38827158

RESUMO

Background: Sepsis is commonly associated with a sudden impairment of brain function, thus leading to significant rates of illness and mortality. The objective of this research was to integrate microbiome and metabolome to reveal the mechanism of microbiota-hippocampus-metabolites axis dysfunction in a mouse model of sepsis. Methods: A mouse model of sepsis was established via cecal ligation and puncture. The potential associations between the composition of the gut microbiota and metabolites in the hippocampus of mice with sepsis were investigated by combining 16S ribosomal RNA gene sequencing and ultra-high-performance liquid chromatography tandem mass spectrometry. Results: A total of 140 differential metabolites were identified in the hippocampal tissues of mice with sepsis when compared to those of control mice. These differential metabolites in mice with sepsis were not only associated with autophagy and serotonergic synapse, but also involved in the metabolism and synthesis of numerous amino acids. At the phylum level, the abundance of Bacteroidota was increased, while that of Firmicutes (Bacillota) was decreased in mice with sepsis. At the genus level, the abundance of Alistipes was increased, while that of Lachnospiraceae_NK4A136_group was decreased in mice with sepsis. The Firmicutes (Bacillota)/Bacteroidota (F/B) ratio was decreased in mice with sepsis when compared to that of control mice. Furthermore, the F/B ratio was positively correlated with 5'-methylthioadenosine, PC (18:3(9Z,12Z,15Z)/18:0) and curdione, and negatively correlated with indoxylsulfuric acid, corticosterone, kynurenine and ornithine. Conclusion: Analysis revealed a reduction in the F/B ratio in mice with sepsis, thus contributing to the disturbance of 5'-methylthioadenosine, curdione, PC (18:3(9Z,12Z,15Z)/18:0), corticosterone, ornithine, indoxylsulfuric acid and kynurenine; eventually, these changes led to hippocampus dysfunction. Our findings provide a new direction for the management of sepsis-induced hippocampus dysfunction.

5.
Stem Cells Int ; 2024: 5553852, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38882596

RESUMO

Gastric cancer stem cells (GCSCs) originate from both gastric adult stem cells and bone marrow cells and are conspicuously present within the histological milieu of gastric cancer tissue. GCSCs play pivotal and multifaceted roles in the initiation, progression, and recurrence of gastric cancer. Hence, the characterization of GCSCs not only facilitates precise target identification for prospective therapeutic interventions in gastric cancer but also has significant implications for targeted therapy and the prognosis of gastric cancer. The prevailing techniques for GCSC purification involve their isolation using surface-specific cell markers, such as those identified by flow cytometry and immunomagnetic bead sorting techniques. In addition, in vitro culture and side-population cell sorting are integral methods in this context. This review discusses the surface biomarkers, isolation techniques, and identification methods of GCSCs, as well as their role in the treatment of gastric cancer.

6.
Mater Today Bio ; 26: 101106, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38883421

RESUMO

Breaking the poor permeability of immune checkpoint inhibitors (ICIs) caused by the stromal barrier and reversing the immunosuppressive microenvironment are significant challenges in pancreatic cancer immunotherapy. In this study, we synthesized core-shell Fe3O4@TiO2 nanoparticles to act as carriers for loading VISTA monoclonal antibodies to form Fe3O4@TiO2@VISTAmAb (FTV). The nanoparticles are designed to target the overexpressed ICIs VISTA in pancreatic cancer, aiming to improve magnetic resonance imaging-guided sonodynamic therapy (SDT)-facilitated immunotherapy. Laser confocal microscopy and flow cytometry results demonstrate that FTV nanoparticles are specifically recognized and phagocytosed by Panc-2 cells. In vivo experiments reveal that ultrasound-triggered TiO2 SDT can induce tumor immunogenic cell death (ICD) and recruit T-cell infiltration within the tumor microenvironment by releasing damage-associated molecular patterns (DAMPs). Furthermore, ultrasound loosens the dense fibrous stroma surrounding the pancreatic tumor and increases vascular density, facilitating immune therapeutic efficiency. In summary, our study demonstrates that FTV nanoparticles hold great promise for synergistic SDT and immunotherapy in pancreatic cancer.

7.
Medicine (Baltimore) ; 103(20): e38213, 2024 May 17.
Artigo em Inglês | MEDLINE | ID: mdl-38758852

RESUMO

Identifying prognostic factors in elderly patients with severe coronavirus disease 2019 (COVID-19) is crucial for clinical management. Recent evidence suggests malnutrition and renal dysfunction are associated with poor outcome. This study aimed to develop a prognostic model incorporating prognostic nutritional index (PNI), estimated glomerular filtration rate (eGFR), and other parameters to predict mortality risk. This retrospective analysis included 155 elderly patients with severe COVID-19. Clinical data and outcomes were collected. Logistic regression analyzed independent mortality predictors. A joint predictor "L" incorporating PNI, eGFR, D-dimer, and lactate dehydrogenase (LDH) was developed and internally validated using bootstrapping. Decreased PNI (OR = 1.103, 95% CI: 0.78-1.169), decreased eGFR (OR = 0.964, 95% CI: 0.937-0.992), elevated D-dimer (OR = 1.001, 95% CI: 1.000-1.004), and LDH (OR = 1.005, 95% CI: 1.001-1.008) were independent mortality risk factors (all P < .05). The joint predictor "L" showed good discrimination (area under the curve [AUC] = 0.863) and calibration. The bootstrapped area under the curve was 0.858, confirming model stability. A combination of PNI, eGFR, D-dimer, and LDH provides useful prognostic information to identify elderly patients with severe COVID-19 at highest mortality risk for early intervention. Further external validation is warranted.


Assuntos
COVID-19 , Taxa de Filtração Glomerular , Avaliação Nutricional , SARS-CoV-2 , Humanos , COVID-19/mortalidade , COVID-19/complicações , Idoso , Masculino , Feminino , Estudos Retrospectivos , Prognóstico , Idoso de 80 Anos ou mais , Produtos de Degradação da Fibrina e do Fibrinogênio/análise , Produtos de Degradação da Fibrina e do Fibrinogênio/metabolismo , Fatores de Risco , L-Lactato Desidrogenase/sangue , Índice de Gravidade de Doença , Desnutrição/diagnóstico , Desnutrição/mortalidade
8.
Plant Biotechnol J ; 2024 May 18.
Artigo em Inglês | MEDLINE | ID: mdl-38761386

RESUMO

Seed vigour, including rapid, uniform germination and robust seedling establishment under various field conditions, is becoming an increasingly essential agronomic trait for achieving high yield in crops. However, little is known about this important seed quality trait. In this study, we performed a genome-wide association study to identify a key transcription factor ZmRap2.7, which regulates seed vigour through transcriptionally repressing expressions of three ABA signalling genes ZmPYL3, ZmPP2C and ZmABI5 and two phosphatidylethanolamine-binding genes ZCN9 and ZCN10. In addition, ZCN9 and ZCN10 proteins could interact with ZmPYL3, ZmPP2C and ZmABI5 proteins, and loss-of-function of ZmRap2.7 and overexpression of ZCN9 and ZCN10 reduced ABA sensitivity and seed vigour, suggesting a complex regulatory network for regulation of ABA signalling mediated seed vigour. Finally, we showed that four SNPs in ZmRap2.7 coding region influenced its transcriptionally binding activity to the downstream gene promoters. Together with previously identified functional variants within and surrounding ZmRap2.7, we concluded that the distinct allelic variations of ZmRap2.7 were obtained independently during maize domestication and improvement, and responded separately for the diversities of seed vigour, flowering time and brace root development. These results provide novel genes, a new regulatory network and an evolutional mechanism for understanding the molecular mechanism of seed vigour.

9.
Kidney Blood Press Res ; 49(1): 355-367, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38714185

RESUMO

BACKGROUND: To improve the clinical evaluation of the prognosis of papillary renal cell carcinoma (PRCC), we screened a model to predict the survival of patients with mutations in related genes. METHODS: We downloaded RNA sequencing information from all patients with PRCC in TCGA. We first analyzed the differences in genes and the enrichment of these differences. Then, by selecting mutant genes, constructing a protein-protein interaction network, least absolute shrinkage and selection operator regression, and multivariable Cox regression, a prognosis model was constructed. Additionally, the model was validated using external data sets. We analyzed the immune infiltration of PRCC and the correlation between the model and popular targets. Finally, we performed tissue microarray analysis and immunohistochemistry to verify the expression levels of the three genes. RESULTS: We constructed a three-gene (never in mitosis gene A-related kinase 2 [NEK2], centromere protein A [CENPA], and GINS complex subunit 2 [GINS2]) model. The verification results indicated that the model had a good prediction effect. We also developed a visual nomogram. Enrichment analysis revealed the major pathways involved in muscle system processes. Immunoassays showed that the expression level of CENPA was positively correlated with PD-1 and CTLA4 expression levels. Immunohistochemical and tissue microarray results showed that these three genes were highly expressed in PRCC, which was consistent with the predicted results in the database. CONCLUSION: We constructed and verified a three-gene model to predict the patient survival. The results show that the model has a good prediction effect.


Assuntos
Carcinoma de Células Renais , Neoplasias Renais , Mutação , Humanos , Carcinoma de Células Renais/genética , Carcinoma de Células Renais/imunologia , Carcinoma de Células Renais/patologia , Neoplasias Renais/genética , Neoplasias Renais/imunologia , Neoplasias Renais/patologia , Prognóstico , Proteínas Cromossômicas não Histona/genética , Mapas de Interação de Proteínas , Masculino , Antígeno CTLA-4/genética , Nomogramas , Receptor de Morte Celular Programada 1/genética , Feminino
10.
Stem Cell Res ; 77: 103444, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38761686

RESUMO

The NF1 gene is related to neurofibromatosis type 1 (NF1), which is an autosomal dominant disorder associated with multisystem involvement and epilepsy susceptibility. A human induced pluripotent stem cell (iPSC) line was derived from a pediatric patient with NF1 and epilepsy, harboring a heterozygous NF1 gene mutation. The iPSC line exhibits high levels of pluripotency markers, maintains the NF1 gene mutation, and demonstrates the capacity to undergo differentiation potential in vitro into three germ layers. The iPSC line will serve as a valuable resource for investigating the underlying mechanisms and conducting drug screening related to NF1 and NF1-associated epilepsy.


Assuntos
Epilepsia , Heterozigoto , Células-Tronco Pluripotentes Induzidas , Mutação , Neurofibromatose 1 , Humanos , Células-Tronco Pluripotentes Induzidas/metabolismo , Células-Tronco Pluripotentes Induzidas/patologia , Neurofibromatose 1/genética , Neurofibromatose 1/patologia , Epilepsia/genética , Epilepsia/patologia , Neurofibromina 1/genética , Linhagem Celular , Diferenciação Celular , Masculino , Genes da Neurofibromatose 1
11.
J Chromatogr A ; 1727: 465011, 2024 Jul 19.
Artigo em Inglês | MEDLINE | ID: mdl-38776604

RESUMO

Chiral enantiomers, especially the enantiomers of chiral drugs often exhibit different pharmacological activity, metabolism and toxicity, thus it is of great research significance to scientifically and reasonably develop single chiral drugs with low toxicity and high efficiency. Among them, high performance liquid chromatographic techniques based on chiral stationary phases (CSPs) has become one of the most attractive methods used to evaluate the enantiomeric purity of single-enantiomers compound of pharmacological relevance. In this work, pillar[5]arene functionalized with L- and D-histidine, respectively, were modified on the surface of mesoporous silica as novel chiral stationary phases called L/DHis-BP5-Sil. Notably, L/D-histidine had the characteristics of low steric hindrance and easy derivatization. Although the π-π interaction of imidazole group was weaker than that of benzene ring, the benzene ring bonding imidazole-conjugated ring in the structure produced better enantioseparation effect. The results showed that L/DHis-BP5-Sil can separate a variety of complex structural enantiomers with excellent reproducibility, thermal stability and separation performance. Hence, the unique advantage of the highly selective separation of L/DHis-BP5-Sil provides new insights into the enantioseparation field.


Assuntos
Calixarenos , Histidina , Dióxido de Silício , Estereoisomerismo , Dióxido de Silício/química , Calixarenos/química , Histidina/química , Cromatografia Líquida de Alta Pressão/métodos , Porosidade , Reprodutibilidade dos Testes , Compostos de Amônio Quaternário/química
12.
Nat Genet ; 56(6): 1110-1120, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38811844

RESUMO

Genome-wide association studies of brain imaging phenotypes are mainly performed in European populations, but other populations are severely under-represented. Here, we conducted Chinese-alone and cross-ancestry genome-wide association studies of 3,414 brain imaging phenotypes in 7,058 Chinese Han and 33,224 white British participants. We identified 38 new associations in Chinese-alone analyses and 486 additional new associations in cross-ancestry meta-analyses at P < 1.46 × 10-11 for discovery and P < 0.05 for replication. We pooled significant autosomal associations identified by single- or cross-ancestry analyses into 6,443 independent associations, which showed uneven distribution in the genome and the phenotype subgroups. We further divided them into 44 associations with different effect sizes and 3,557 associations with similar effect sizes between ancestries. Loci of these associations were shared with 15 brain-related non-imaging traits including cognition and neuropsychiatric disorders. Our results provide a valuable catalog of genetic associations for brain imaging phenotypes in more diverse populations.


Assuntos
Encéfalo , População do Leste Asiático , Neuroimagem , População Branca , Adulto , Feminino , Humanos , Masculino , Povo Asiático/genética , Encéfalo/diagnóstico por imagem , Estudo de Associação Genômica Ampla , Imageamento por Ressonância Magnética , Fenótipo , Polimorfismo de Nucleotídeo Único , População Branca/genética , População do Leste Asiático/genética , Reino Unido , China
13.
Nature ; 630(8016): 484-492, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38811729

RESUMO

The CRISPR system is an adaptive immune system found in prokaryotes that defends host cells against the invasion of foreign DNA1. As part of the ongoing struggle between phages and the bacterial immune system, the CRISPR system has evolved into various types, each with distinct functionalities2. Type II Cas9 is the most extensively studied of these systems and has diverse subtypes. It remains uncertain whether members of this family can evolve additional mechanisms to counter viral invasions3,4. Here we identify 2,062 complete Cas9 loci, predict the structures of their associated proteins and reveal three structural growth trajectories for type II-C Cas9. We found that novel associated genes (NAGs) tended to be present within the loci of larger II-C Cas9s. Further investigation revealed that CbCas9 from Chryseobacterium species contains a novel ß-REC2 domain, and forms a heterotetrameric complex with an NAG-encoded CRISPR-Cas-system-promoting (pro-CRISPR) protein of II-C Cas9 (PcrIIC1). The CbCas9-PcrIIC1 complex exhibits enhanced DNA binding and cleavage activity, broader compatibility for protospacer adjacent motif sequences, increased tolerance for mismatches and improved anti-phage immunity, compared with stand-alone CbCas9. Overall, our work sheds light on the diversity and 'growth evolutionary' trajectories of II-C Cas9 proteins at the structural level, and identifies many NAGs-such as PcrIIC1, which serves as a pro-CRISPR factor to enhance CRISPR-mediated immunity.


Assuntos
Proteína 9 Associada à CRISPR , Sistemas CRISPR-Cas , Sistemas CRISPR-Cas/genética , Proteína 9 Associada à CRISPR/metabolismo , Proteína 9 Associada à CRISPR/genética , Modelos Moleculares , Domínios Proteicos , Loci Gênicos/genética , Clivagem do DNA , Bactérias/virologia , Bactérias/genética , Bactérias/imunologia , Bacteriófagos/genética , Edição de Genes , Repetições Palindrômicas Curtas Agrupadas e Regularmente Espaçadas/genética , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo
14.
Biosens Bioelectron ; 255: 116264, 2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38588629

RESUMO

Chemical-nose strategy has achieved certain success in the discrimination and identification of pathogens. However, this strategy usually relies on non-specific interactions, which are prone to be significantly disturbed by the change of environment thus limiting its practical usefulness. Herein, we present a novel chemical-nose sensing approach leveraging the difference in the dynamic metabolic variation during peptidoglycan metabolism among different species for rapid pathogen discrimination. Pathogens were first tethered with clickable handles through metabolic labeling at two different acidities (pH = 5 and 7) for 20 and 60 min, respectively, followed by click reaction with fluorescence up-conversion nanoparticles to generate a four-dimensional signal output. This discriminative multi-dimensional signal allowed eight types of model bacteria to be successfully classified within the training set into strains, genera, and Gram phenotypes. As the difference in signals of the four sensing channels reflects the difference in the amount/activity of enzymes involved in metabolic labeling, this strategy has good anti-interference capability, which enables precise pathogen identification within 2 h with 100% accuracy in spiked urinary samples and allows classification of unknown species out of the training set into the right phenotype. The robustness of this approach holds significant promise for its widespread application in pathogen identification and surveillance.


Assuntos
Técnicas Biossensoriais , Nanopartículas , Bactérias , Hidrolases , Aprendizado de Máquina
15.
ACS Appl Mater Interfaces ; 16(15): 19379-19390, 2024 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-38568698

RESUMO

Photodriven chiral catalysis is the combination of photocatalysis and chiral catalysis and is considered one of the cleanest and most efficient methods for the synthesis of chiral compounds or drugs. Furthermore, due to the potential metal contamination associated with most metal-based catalysts, metal-free chiral photocatalysts are ideal candidates. In this work, we demonstrate that metal-free chiral carbon dots (CDs) exhibit size-dependent enantioselective photocatalytic activity. Using serine as the raw material, chiral CDs with well-defined structures and average sizes of 2.22, 3.01, 3.70, 4.77, and 7.21 nm were synthesized using the electrochemical method. These chiral CDs possess size-dependent band gaps and exhibit photoresponsive enantioselective catalytic activity toward the oxidation of dihydroxyphenylalanine (DOPA). Under light-assisted conditions, chiral CDs (L72, 500 µg/mL) exhibit high selectivity (selectivity factor: 2.07) and maintain a certain level of catalytic activity (1.34 µM/min) even at a low temperature of 5 °C. The high catalytic activity of the chiral CDs arises from their photoelectrons reducing O2 to generate O2-, as the active oxygen species for DOPA oxidation. The high enantioselectivity of the chiral CDs is attributed to their differential adsorption capabilities toward DOPA enantiomers. This study provides a new approach for designing metal-free chiral photocatalysts with high enantioselectivity.

16.
Front Cell Infect Microbiol ; 14: 1358873, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38638822

RESUMO

SARS-CoV-2-induced excessive inflammation in brain leads to damage of blood-brain barrier, hypoxic-ischemic injury, and neuron degeneration. The production of inflammatory cytokines by brain microvascular endothelial cells and microglia is reported to be critically associated with the brain pathology of COVID-19 patients. However, the cellular mechanisms for SARS-CoV-2-inducing activation of brain cells and the subsequent neuroinflammation remain to be fully delineated. Our research, along with others', has recently demonstrated that SARS-CoV-2-induced accumulation and activation of mast cells (MCs) in mouse lung could further induce inflammatory cytokines and consequent lung damages. Intracerebral MCs activation and their cross talk with other brain cells could induce neuroinflammation that play important roles in neurodegenerative diseases including virus-induced neuro-pathophysiology. In this study, we investigated the role of MC activation in SARS-CoV-2-induced neuroinflammation. We found that (1) SARS-CoV-2 infection triggered MC accumulation in the cerebrovascular region of mice; (2) spike/RBD (receptor-binding domain) protein-triggered MC activation induced inflammatory factors in human brain microvascular endothelial cells and microglia; (3) MC activation and degranulation destroyed the tight junction proteins in brain microvascular endothelial cells and induced the activation and proliferation of microglia. These findings reveal a cellular mechanism of SARS-CoV-2-induced neuroinflammation.


Assuntos
COVID-19 , SARS-CoV-2 , Humanos , Camundongos , Animais , SARS-CoV-2/metabolismo , COVID-19/metabolismo , Células Endoteliais/metabolismo , Mastócitos/metabolismo , Doenças Neuroinflamatórias , Microglia/metabolismo , Encéfalo/metabolismo , Inflamação/metabolismo , Citocinas/metabolismo
17.
J Colloid Interface Sci ; 666: 141-150, 2024 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-38593649

RESUMO

The defects and interface engineering are efficient approaches to adjust the physical and chemical properties of nanomaterials to enhance catalytic performance. In this study, we report a new MOFs-driven porous Cu2S/MoS2-Vs octahedral semiconductor with heterostructure and photothermal effect. The introduction of sulfur vacancies directly improves the adsorption performance of CO2, and the formation of heterostructure significantly increases the charge transfer rate. The C-penetrating material obtained from MOFs not only acts as an octahedral skeleton support, but also gives photothermal effects under photoelectric conditions. The formation rate of sole C2 products in photoelectrocatalytic CO2 reduction by using Cu2S/MoS2-Vs heterostructure is up to 52 µM·h-1·cm-2 equal to the total electron transfer rate of 541 µM·h-1·cm-2. The carbene mechanism and reaction pathways were proposed and verified by 13CO2 isotopic labelling and operando Fourier transform infrared (FT-IR) spectra. The important intermediates of *CO2-, *CO, *CHO and *CHO-CHO were identified by operando FT-IR spectra. In the comparative experiments, the photothermal electrons are beneficial to C2 products. DFT calculations indicate that the presence of S vacancies (Vs) reduces the energy barrier for product generation.

18.
Plant J ; 2024 Apr 28.
Artigo em Inglês | MEDLINE | ID: mdl-38678554

RESUMO

Maize plastid terminal oxidase1 (ZmPTOX1) plays a pivotal role in seed development by upholding redox balance within seed plastids. This study focuses on characterizing the white kernel mutant 3735 (wk3735) mutant, which yields pale-yellow seeds characterized by heightened protein but reduced carotenoid levels, along with delayed germination compared to wild-type (WT) seeds. We successfully cloned and identified the target gene ZmPTOX1, responsible for encoding maize PTOX-a versatile plastoquinol oxidase and redox sensor located in plastid membranes. While PTOX's established role involves regulating redox states and participating in carotenoid metabolism in Arabidopsis leaves and tomato fruits, our investigation marks the first exploration of its function in storage organs lacking a photosynthetic system. Through our research, we validated the existence of plastid-localized ZmPTOX1, existing as a homomultimer, and established its interaction with ferredoxin-NADP+ oxidoreductase 1 (ZmFNR1), a crucial component of the electron transport chain (ETC). This interaction contributes to the maintenance of redox equilibrium within plastids. Our findings indicate a propensity for excessive accumulation of reactive oxygen species (ROS) in wk3735 seeds. Beyond its known role in carotenoids' antioxidant properties, ZmPTOX1 also impacts ROS homeostasis owing to its oxidizing function. Altogether, our results underscore the critical involvement of ZmPTOX1 in governing seed development and germination by preserving redox balance within the seed plastids.

19.
Curr Eye Res ; : 1-7, 2024 Apr 28.
Artigo em Inglês | MEDLINE | ID: mdl-38679899

RESUMO

PURPOSE: The aim of this study was to examine the impact of an 8-week high-speed circuit resistance training program (HSCT) on choriocapillaris density (CCD) in healthy older adults. METHODS: Eighteen cognitively normal older adults were enrolled and randomly assigned to either the HSCT or the control group (CON). The HSCT group was comprised of 11 participants who trained three times a week for eight weeks, while the CON group consisted of 7 participants who did not engage in formal training. Optical coherence tomography angiography (OCTA) was employed to image both eyes of each subject at baseline and at the 8-week follow-up. The choriocapillaris density (CCD) of 2.5 mm in diameter centered on the fovea was measured. RESULTS: The average age of the HSCT group was 70.3 ± 5.7 years, which was not different from the CON group (average age: 71.6 ± 5.2 years, p = 0.62). There were no significant changes in CCD between baseline and the 8-week follow-up in either the HSCT or the CON group-specifically, the baseline CCD in the HSCT group was 63.3% ± 5% (Mean ± SD), which did not differ significantly from the 8-week follow-up after HSCT training (64.7% ± 4%, p = 0.19). Likewise, there was no significant difference in CCD between baseline and the 8-week follow-up in the CON group (63.3% ± 3% and 62.7% ± 5%, respectively, p = 0.66). CONCLUSION: CCD appeared to remain stable after 8 weeks of HSCT in healthy older individuals, possibly due to autoregulation. Further research with extended training may be necessary to verify these findings.

20.
Antibiotics (Basel) ; 13(4)2024 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-38667017

RESUMO

Staphylococcus pseudintermedius is an opportunistic pathogen commonly found in canines, and has garnered escalating interest due to its potential for zoonotic transmission and increasing antimicrobial resistance. However, the excessive use of antibiotics and the characteristic of S. pseudintermedius forming biofilms make treatment challenging. In this study, the in vivo and in vitro antimicrobial activity and mechanisms of action of NZ2114, a plectasin-derived peptide, against S. pseudintermedius were investigated. NZ2114 exhibited potent antibacterial activity towards S. pseudintermedius (minimum inhibitory concentration, MIC = 0.23 µM) with a lower probability of inducing drug-resistant mutations and efficient bactericidal action, which was superior to those of mopirucin (MIC = 0.25-0.5 µM) and lincomycin (MIC = 4.34-69.41 µM). The results of electron microscopy and flow cytometry showed that NZ2114 disrupted S. pseudintermedius' cell membrane, resulting in cellular content leakage, cytoplasmic membrane shrinkage, and, eventually, cell death. The intracellular ROS activity and Alamar Blue detection showed that NZ2114 interferes with intracellular metabolic processes. In addition, NZ2114 effectively inhibits biofilm formation, and confocal laser scanning microscopy further revealed its antibacterial and anti-biofilm activity (biofilm thickness reduced to 6.90-17.70 µm). The in vivo therapy of NZ2114 in a mouse pyoderma model showed that it was better than lincomycin in effectively decreasing the number of skin bacteria, alleviating histological damage, and reducing the skin damage area. These results demonstrated that NZ2114 may be a promising antibacterial candidate against S. pseudintermedius infections.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...