Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Mol Ther Nucleic Acids ; 35(1): 102100, 2024 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-38222302

RESUMO

Epigenetic regulation contributes to the dysregulation of gene expression involved in cancer biology. Nevertheless, the roles of epigenetic regulators (ERs) in tumor immunity and immune response remain basically unclear. Here, we developed the epigenetic regulator in immunology (EPRIM) approach to identify immune-related ERs and comprehensively dissected the ER regulation in tumor immune response across 33 cancers. The identified immune-related ERs were related to immune infiltration and could stratify cancer patients into two risk groups in multiple independent datasets. These patient groups were characterized by distinct immune functions, immune infiltrates, driver gene mutations, and prognoses. Furthermore, we constructed an immune ER-based signature and highlighted its potential utility in predicting clinical benefit from immunotherapy and selecting therapeutic agents. Taken together, our identification and evaluation of immune-related ERs highlight the usefulness of EPRIM for the understanding of ERs in immune regulation and the clinical relevance in evaluation of cancer patient prognosis and response to immune checkpoint blockade therapy.

2.
Epigenetics ; 18(1): 2139067, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-36305095

RESUMO

Epigenetic machinery contributes to gene regulation in eukaryotic species. However, the machinery including more than 600 epigenetic regulator (ER) genes responsible for reading, writing, and erasing histone modifications and DNA modifications remains largely uncharacterized across species. We compile a comprehensive list of ERs based on an evolutionary analysis across 23 species, which is the most comprehensive ER list in various species until recently. We further perform comparative transcriptomic analyses across different tissues in humans, mice, as well as other amniote species. We observe a consistent tissue-of-origin expression specificity pattern of duplicated ER genes across species and suggest links between expression specificity and ER gene evolution as well as ER function. Additional analyses further suggest that ER duplication can generate tissue-specific ER genes with the same epigenetic substrates, which may be closely related to their regulatory specificity in tissue development. Our work can serve as a foundation to better comprehend the tissue-specific expression patterns of ER genes from an evolutionary perspective and also the functional implications of ERs in tissue-specific epigenetic regulation.


Assuntos
Metilação de DNA , Epigênese Genética , Humanos , Animais , Camundongos , Regulação da Expressão Gênica , Perfilação da Expressão Gênica , Transcriptoma , Evolução Molecular
3.
Clin Epigenetics ; 14(1): 117, 2022 09 20.
Artigo em Inglês | MEDLINE | ID: mdl-36127710

RESUMO

BACKGROUND: DNA 5-hydroxymethylcytosine (5hmC) is produced by dynamic 5mC oxidation process contributing to tissue specification, and loss of 5hmC has been reported in multiple cancers including genitourinary cancers. However, 5hmC is also cell-type specific, and its variability may exist between differentiated tumor cells and cancer stem cells. Thus, cancer-associated changes in 5hmC may be contributed by distinct sets of tumor cells within the tumor tissues. RESULTS: Here, we applied a sensitive immunoprecipitation-based method (hMeDIP-seq) to analyze 5hmC changes during genitourinary carcinogenesis (including prostate, urothelial and kidney). We confirmed the tissue-specific distribution of 5hmC in genitourinary tissues and identified regional gain and global loss of 5hmC coexisting in genitourinary cancers. The genes with gain of 5hmC during tumorigenesis were functionally enriched in regulating stemness and hypoxia, whereas were associated with poor clinical prognosis irrespective of their differences in tumor type. We identified that gain of 5hmC occurred in soft fibrin gel-induced 3D tumor spheres with a tumor-repopulating phenotype in two prostate cancer cell lines, 22RV1 and PC3, compared with conventional two-dimensional (2D) rigid dishes. Then, we defined a malignant signature derived from the differentially hydroxymethylated regions affected genes of cancer stem-like cells, which could predict a worse clinical outcome and identified phenotypically malignant populations of cells from prostate cancer tumors. Notably, an oxidation-resistant vitamin C derivative, ascorbyl phosphate magnesium, restored 5hmC and killed the cancer stem cell-like cells leading to apoptosis in prostate cancer cell lines. CONCLUSIONS: Collectively, our study dissects the regional gain of 5hmC in maintaining cancer stem-like cells and related to poor prognosis, which provides proof of concept for an epigenetic differentiation therapy with vitamin C by 5hmC reprogramming.


Assuntos
Neoplasias da Próstata , Neoplasias Urogenitais , 5-Metilcitosina/análogos & derivados , Ácido Ascórbico/farmacologia , Carcinogênese , DNA/metabolismo , Metilação de DNA , Fibrina/metabolismo , Humanos , Magnésio , Masculino , Fosfatos , Neoplasias da Próstata/genética , Neoplasias Urogenitais/genética
4.
Transl Oncol ; 14(1): 100929, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-33157517

RESUMO

The evolutionary trajectories of treatment-naïve metastatic tumour are largely unknown. Such knowledge is crucial for cancer prevention and therapeutic interventions. Herein, we performed whole genome or exome sequencing of 19 tumour specimens and 8 matched normal kidney tissues from 8 clear cell renal cell carcinoma (ccRCC) patients. The clonal origin and parallel evolution of the metastatic lesions and primary tumour is identified in all 8 patients. But the evolutionary branches of primary and metastatic clones diverge early in the development of the tumour. More importantly, larger scale genomic aberrations including somatic copy number alteration (SCNA) or loss of heterozygosity (LOH) differentiate the metastasis lesions from primary tumour. Based on it, we identify that LOH at 14q, loss of 14q32.31 and gain of 6p22.2 are highly selected events during metastatic evolution. Further functional validations of multiple genes within the SCNA regions indicated that these selected events interact to drive metastatic risk with potential therapeutic relevance. Collectively, we described increased genome instability in metastatic ccRCC and validated it via molecular biology, providing an evolution pattern which may facilitate the translation of basic finding.

5.
Nucleic Acids Res ; 48(19): 11083-11096, 2020 11 04.
Artigo em Inglês | MEDLINE | ID: mdl-33035345

RESUMO

N6-Methyladenosine (m6A) messenger RNA methylation is a well-known epitranscriptional regulatory mechanism affecting central biological processes, but its function in human cellular senescence remains uninvestigated. Here, we found that levels of both m6A RNA methylation and the methyltransferase METTL3 were reduced in prematurely senescent human mesenchymal stem cell (hMSC) models of progeroid syndromes. Transcriptional profiling of m6A modifications further identified MIS12, for which m6A modifications were reduced in both prematurely senescent hMSCs and METTL3-deficient hMSCs. Knockout of METTL3 accelerated hMSC senescence whereas overexpression of METTL3 rescued the senescent phenotypes. Mechanistically, loss of m6A modifications accelerated the turnover and decreased the expression of MIS12 mRNA while knockout of MIS12 accelerated cellular senescence. Furthermore, m6A reader IGF2BP2 was identified as a key player in recognizing and stabilizing m6A-modified MIS12 mRNA. Taken together, we discovered that METTL3 alleviates hMSC senescence through m6A modification-dependent stabilization of the MIS12 transcript, representing a novel epitranscriptional mechanism in premature stem cell senescence.


Assuntos
Adenosina/análogos & derivados , Metiltransferases/metabolismo , Proteínas Associadas aos Microtúbulos/genética , Progéria/genética , RNA Mensageiro/metabolismo , Síndrome de Werner/genética , Adenosina/genética , Células Cultivadas , Senescência Celular , Humanos , Células-Tronco Mesenquimais , Metilação , Proteínas de Ligação a RNA/metabolismo
8.
Sci Total Environ ; 526: 366-73, 2015 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-25991498

RESUMO

This study investigated the characteristics of 10 subtypes of antibiotic resistance genes (ARGs) for sulfonamide, tetracycline, ß-lactam and macrolide resistance and the class 1 integrase gene (intI1). In total, these genes were monitored in 24 samples across each stage of five full-scale pharmaceutical wastewater treatment plants (PWWTPs) using qualitative and real-time quantitative polymerase chain reactions (PCRs). The levels of typical ARG subtypes in the final effluents ranged from (2.08±0.16)×10(3) to (3.68±0.27)×10(6) copies/mL. The absolute abundance of ARGs in effluents accounted for only 0.6%-59.8% of influents of the five PWWTPs, while the majority of the ARGs were transported to the dewatered sludge with concentrations from (9.38±0.73)×10(7) to (4.30±0.81)×10(10) copies/g dryweight (dw). The total loads of ARGs discharged through dewatered sludge was 7-308 folds higher than that in the raw influents and 16-638 folds higher than that in the final effluents. The proliferation of ARGs mainly occurs in the biological treatment processes, such as conventional activated sludge, cyclic activated sludge system (CASS) and membrane bio-reactor (MBR), implying that significant replication of certain subtypes of ARGs may be attributable to microbial growth. High concentrations of antibiotic residues (ranging from 0.14 to 92.2 mg/L) were detected in the influents of selected wastewater treatment systems and they still remain high residues in the effluents. Partial correlation analysis showed significant correlations between the antibiotic concentrations and the associated relative abundance of ARG subtypes in the effluent. Although correlation does not prove causation, this study demonstrates that in addition to bacterial growth, the high antibiotic residues within the pharmaceutical WWTPs may influence the proliferation and fate of the associated ARG subtypes.


Assuntos
Resistência Microbiana a Medicamentos/genética , Genes Bacterianos , Eliminação de Resíduos Líquidos , Águas Residuárias/microbiologia , Preparações Farmacêuticas/análise , Poluentes Químicos da Água/análise
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...