Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Dalton Trans ; 43(17): 6536-47, 2014 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-24622814

RESUMO

A simple and sensitive biosensor array based on phosphorescence detection that is able to detect oxygen and glucose in human serum, respectively, has been developed. We demonstrate an electrochemical method as a fast, effective, tunable, and versatile means of growing phosphorescence sensing material. This sensing material, crystalline iridium(III)-Zn(II) coordination polymers, namely Ir-Zn(e), was grown on a stainless steel mesh and then doped in a sol-gel matrix. The emission of Ir-Zn(e) was ascribed to a metal-to-ligand charge transfer transition (MLCT). The noteworthy oxygen-sensing properties of Ir-Zn(e) were also evaluated. The optimal oxygen-sensing conditions of Ir-Zn(e) with a deduced K(SV) value of 3.55 were 5 V and 30 °C for 1 hour. Moreover, the short response time (23 s) and the recovery time (21 s) toward oxygen have been measured. The reversibility experiment was carried out for eleven cycles. The resulting >70% recovery of intensity for Ir-Zn(e) on each cycle demonstrated a high degree of reproducibility during the sensing process. The detection limit could be 0.050% for gaseous oxygen. The sensing substrate was subsequently built up under glucose oxidase encapsulated in hydrogel and then immobilized on an egg membrane by the layer-by-layer method. Once the glucose solution was injected into this array, oxygen content depleted simultaneously with a concomitant increase in the phosphorescence of coordination polymers. The linear dynamic range for the determination of glucose was 0.1-6.0 mM, the correlation coefficient (R(2)) was 0.9940 (y = 0.75 [glucose] + 0.539), and the response time was less than 120 s. The minimum detectable concentration for glucose was calculated to be 0.05 mM from three times signal to noise. The photophysical properties of the sensing material and the effects of buffer concentration, pH, interference, matrix effect, temperature, and the stability of the biosensor array have also been studied in detail. The biosensor array was successfully applied to the determination of glucose in human serum.

2.
Genome ; 53(6): 472-81, 2010 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-20555436

RESUMO

The P genome of Agropyron Gaertn., a wild relative of wheat, contains an abundance of desirable genes that can be utilized as genetic resources to improve wheat. In this study, wheat - Aegilops cylindrica Host gametocidal chromosome 2C addition lines were crossed with wheat - Agropyron cristatum (L.) Gaertn. disomic addition line accession II-21 with alien recombinant chromosome (1.4)P. We successfully induced wheat - A. cristatum alien chromosomal translocations for the first time. The frequency of translocation in the progeny was 3.75%, which was detected by molecular markers and genomic in situ hybridization (GISH). The translocation chromosomes were identified by dual-color GISH /fluorescence in situ hybridization (FISH). The P genomic DNA was used as probe to detect the (1.4)P chromosome fragment, and pHvG39, pAs1, or pSc119.2 repeated sequences were used as probes to identify wheat translocated chromosomes. The results showed that six types of translocations were identified in the three wheat - A. cristatum alien translocation lines, including the whole arm or terminal portion of a (1.4)P chromosome. The (1.4)P chromosome fragments were translocated to wheat chromosomes 1B, 2B, 5B, and 3D. The breakpoints were located at the centromeres of 1B and 2B, the pericentric locations of 5BS, and the terminals of 5BL and 3DS. In addition, we obtained 12 addition-deletion lines that contained alien A. cristatum chromosome (1.4)P in wheat background. All of these wheat - A. cristatum alien translocation lines and addition-deletion lines would be valuable for identifying A. cristatum chromosome (1.4)P-related genes and providing genetic resources and new germplasm accessions for the genetic improvement of wheat. The specific molecular markers of A. cristatum (1.4)P chromosome have been developed and used to track the (1.4)P chromatin.


Assuntos
Agropyron/genética , Genoma de Planta/genética , Poaceae/genética , Translocação Genética , Bandeamento Cromossômico , Cromossomos de Plantas/genética , Hibridização Genética , Hibridização in Situ Fluorescente/métodos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...