Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sensors (Basel) ; 24(13)2024 Jul 06.
Artigo em Inglês | MEDLINE | ID: mdl-39001171

RESUMO

The driver in road hypnosis has not only some external characteristics, but also some internal characteristics. External features have obvious manifestations and can be directly observed. Internal features do not have obvious manifestations and cannot be directly observed. They need to be measured with specific instruments. Electroencephalography (EEG), as an internal feature of drivers, is the golden parameter for drivers' life identification. EEG is of great significance for the identification of road hypnosis. An identification method for road hypnosis based on human EEG data is proposed in this paper. EEG data on drivers in road hypnosis can be collected through vehicle driving experiments and virtual driving experiments. The collected data are preprocessed with the PSD (power spectral density) method, and EEG characteristics are extracted. The neural networks EEGNet, RNN, and LSTM are used to train the road hypnosis identification model. It is shown from the results that the model based on EEGNet has the best performance in terms of identification for road hypnosis, with an accuracy of 93.01%. The effectiveness and accuracy of the identification for road hypnosis are improved in this study. The essential characteristics for road hypnosis are also revealed. This is of great significance for improving the safety level of intelligent vehicles and reducing the number of traffic accidents caused by road hypnosis.


Assuntos
Condução de Veículo , Eletroencefalografia , Hipnose , Redes Neurais de Computação , Humanos , Eletroencefalografia/métodos , Hipnose/métodos , Acidentes de Trânsito
2.
Artigo em Inglês | MEDLINE | ID: mdl-36231713

RESUMO

The configuration of ecological land directly affects the structure and function of an ecosystem and, ultimately, its ability to meet human needs. From the perspective of human needs, this paper classified human needs into material needs, security needs and spiritual needs. Using Hechi City, Guangxi as the study area, we combined the Multi-objective planning (MOP) and PLUS models to study the quantity and spatial optimization of ecological land under different human needs scenarios, and the optimal allocation of ecological land within the ecological red line was also discussed. We conclude that: (1) Hechi City currently has less arable land, which cannot fully guarantee the material needs of human beings; there is more forest land than the amount needed to meet human needs, which reduces the efficiency of ecological land use. (2) In terms of quantity optimization, and considering the goals of different human needs, the area of grass to forest should be extended to satisfy security needs; the area of arable land should be significantly increased in line with material needs; the area of grass and water, with the goal of accommodating spiritual needs, is the largest compared with the rest of the goals. Under the comprehensive needs goal, the forest land area is greatly reduced, and the rest of the land area is increased; the goals of human material, spiritual and security needs are basically met. (3) In terms of spatial layout optimization, in order to meet the security needs target, grass to forest conversion should be carried out in the northern area to enhance the aggregation of forest land; to meet the material needs target, the southwestern gentle slope area should be concentrated toward continuous farming to guarantee the aggregation of arable land while increasing the area of arable land; to meet the spiritual needs target, the area of water in the northwestern area should be increased, and the rest of the changes are similar to the security needs target; to meet the comprehensive needs target, the overall land use connectivity becomes stronger, the fragmented land types become less and the concentrated continuous area of forest land, arable land and grass increases. (4) The results of the ecological land adjustment within the ecological red line indicate that the current ecological red line delineation is good, and a small amount of adjustment can meet human needs. Based on human demand, combined with the MOP-PLUS model for ecological land optimization, it can accurately portray the spatial and temporal evolution pattern of land use and reveal the optimization path of ecological land, which has important theoretical and practical values.


Assuntos
Conservação dos Recursos Naturais , Ecossistema , China , Cidades , Conservação dos Recursos Naturais/métodos , Florestas , Humanos , Água
3.
Nucleic Acids Res ; 50(6): 3254-3275, 2022 04 08.
Artigo em Inglês | MEDLINE | ID: mdl-35212371

RESUMO

The 48 human nuclear receptors (NRs) form a superfamily of transcription factors that regulate major physiological and pathological processes. Emerging evidence suggests that NR crosstalk can fundamentally change our understanding of NR biology, but detailed molecular mechanisms of crosstalk are lacking. Here, we report the molecular basis of crosstalk between the pregnane X receptor (PXR) and constitutive androstane receptor (CAR), where they form a novel heterodimer, resulting in their mutual inhibition. PXR and CAR regulate drug metabolism and energy metabolism. Although they have been broadly perceived as functionally redundant, a growing number of reports suggests a mutual inhibitory relation, but their precise mode of coordinated action remains unknown. Using methods including RNA sequencing, small-angle X-ray scattering and crosslinking mass spectrometry we demonstrate that the mutual inhibition altered gene expression globally and is attributed to the novel PXR-CAR heterodimerization via the same interface used by each receptor to heterodimerize with its functional partner, retinoid X receptor (RXR). These findings establish an unexpected functional relation between PXR, CAR and RXR, change the perceived functional relation between PXR and CAR, open new perspectives on elucidating their role and designing approaches to regulate them, and highlight the importance to comprehensively investigate nuclear receptor crosstalk.


Assuntos
Receptor Constitutivo de Androstano/metabolismo , Receptor de Pregnano X/metabolismo , Dimerização , Regulação da Expressão Gênica , Humanos , Receptores Citoplasmáticos e Nucleares/metabolismo
4.
J Am Chem Soc ; 143(44): 18467-18480, 2021 11 10.
Artigo em Inglês | MEDLINE | ID: mdl-34648292

RESUMO

The human cytochrome P450 (CYP) CYP3A4 and CYP3A5 enzymes metabolize more than one-half of marketed drugs. They share high structural and substrate similarity and are often studied together as CYP3A4/5. However, CYP3A5 preferentially metabolizes several clinically prescribed drugs, such as tacrolimus. Genetic polymorphism in CYP3A5 makes race-based dosing adjustment of tacrolimus necessary to minimize acute rejection after organ transplantation. Moreover, the differential tissue distribution and expression levels of CYP3A4 and CYP3A5 can aggravate toxicity during treatment. Therefore, selective inhibitors of CYP3A5 are needed to distinguish the role of CYP3A5 from that of CYP3A4 and serve as starting points for potential therapeutic development. To this end, we report the crystal structure of CYP3A5 in complex with a previously reported selective inhibitor, clobetasol propionate (CBZ). This is the first CYP3A5 structure with a type I inhibitor, which along with the previously reported substrate-free and type II inhibitor-bound structures, constitute the main CYP3A5 structural modalities. Supported by structure-guided mutagenesis analyses, the CYP3A5-CBZ structure showed that a unique conformation of the F-F' loop in CYP3A5 enables selective binding of CBZ to CYP3A5. Several polar interactions, including hydrogen bonds, stabilize the position of CBZ to interact with this unique F-F' loop conformation. In addition, functional and biophysical assays using CBZ analogs highlight the importance of heme-adjacent moieties for selective CYP3A5 inhibition. Our findings can be used to guide further development of more potent and selective CYP3A5 inhibitors.


Assuntos
Inibidores do Citocromo P-450 CYP3A/farmacologia , Citocromo P-450 CYP3A/química , Citocromo P-450 CYP3A/metabolismo , Regulação Enzimológica da Expressão Gênica/efeitos dos fármacos , Anti-Inflamatórios/química , Anti-Inflamatórios/farmacologia , Domínio Catalítico , Citocromo P-450 CYP3A/genética , Inibidores do Citocromo P-450 CYP3A/química , Humanos , Modelos Moleculares , Conformação Proteica , Relação Estrutura-Atividade
5.
Expert Opin Drug Metab Toxicol ; 16(8): 711-722, 2020 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-32500752

RESUMO

INTRODUCTION: The human liver is the center for drug metabolism and detoxification and is, therefore, constantly exposed to toxic chemicals. The loss of liver function as a result of this exposure is referred to as drug-induced liver injury (DILI). The pregnane X receptor (PXR) is the primary regulator of the hepatic drug-clearance system, which plays a critical role in mediating idiosyncratic DILI. AREAS COVERED: This review is focused on common mechanisms of PXR-mediated DILI and on in vitro and in vivo models developed to predict and assess DILI. It also provides an update on the development of PXR antagonists that may manage PXR-mediated DILI. EXPERT OPINION: DILI can be caused by many factors, and PXR is clearly linked to DILI. Although emerging data illustrate how PXR mediates DILI and how PXR activity can be modulated, many questions concerning the development of effective PXR modulators remain. Future research should be focused on determining the mechanisms regulating PXR functions in different cellular contexts.


Assuntos
Doença Hepática Induzida por Substâncias e Drogas/fisiopatologia , Efeitos Colaterais e Reações Adversas Relacionados a Medicamentos/fisiopatologia , Receptor de Pregnano X/metabolismo , Animais , Desenvolvimento de Medicamentos , Humanos , Modelos Biológicos , Receptor de Pregnano X/antagonistas & inibidores
6.
J Med Chem ; 63(3): 1415-1433, 2020 02 13.
Artigo em Inglês | MEDLINE | ID: mdl-31965799

RESUMO

The human cytochrome P450 (CYP) enzymes CYP3A4 and CYP3A5 metabolize most drugs and have high similarities in their structure and substrate preference. Whereas CYP3A4 is predominantly expressed in the liver, CYP3A5 is upregulated in cancer, contributing to drug resistance. Selective inhibitors of CYP3A5 are, therefore, critical to validating it as a therapeutic target. Here we report clobetasol propionate (clobetasol) as a potent and selective CYP3A5 inhibitor identified by high-throughput screening using enzymatic and cell-based assays. Molecular dynamics simulations suggest a close proximity of clobetasol to the heme in CYP3A5 but not in CYP3A4. UV-visible spectroscopy and electron paramagnetic resonance analyses confirmed the formation of an inhibitory type I heme-clobetasol complex in CYP3A5 but not in CYP3A4, thus explaining the CYP3A5 selectivity of clobetasol. Our results provide a structural basis for selective CYP3A5 inhibition, along with mechanistic insights, and highlight clobetasol as an important chemical tool for target validation.


Assuntos
Clobetasol/metabolismo , Clobetasol/farmacologia , Inibidores do Citocromo P-450 CYP3A/metabolismo , Inibidores do Citocromo P-450 CYP3A/farmacologia , Citocromo P-450 CYP3A/metabolismo , Heme/metabolismo , Linhagem Celular Tumoral , Clobetasol/química , Citocromo P-450 CYP3A/química , Inibidores do Citocromo P-450 CYP3A/química , Ensaios Enzimáticos , Heme/química , Ensaios de Triagem em Larga Escala , Humanos , Simulação de Acoplamento Molecular , Simulação de Dinâmica Molecular , Ligação Proteica
7.
Biochemistry ; 59(6): 790-801, 2020 02 18.
Artigo em Inglês | MEDLINE | ID: mdl-31899864

RESUMO

In allostery, a signal from one site in a protein is transmitted to a second site to alter its function. Due to its ubiquity in biology and the potential for its exploitation in drug and protein design, the molecular basis of allosteric communication continues to be the subject of intense research. Although allosterically coupled sites are frequently characterized by disorder, how communication between disordered segments occurs remains obscure. Allosteric activation of Escherichia coli BirA dimerization occurs via coupled distant disorder-to-order transitions. In this work, combined structural and computational studies reveal an extensive residue network in BirA. Substitution of several network residues yields large perturbations to allostery. Force distribution analysis reveals that disruptions to the disorder-to-order transitions through amino acid substitution are manifested in shifts in the energy experienced by network residues as well as alterations in packing of an α-helix that plays a critical role in allostery. The combined results reveal a highly distributed allosteric mechanism that is robust to sequence change.


Assuntos
Regulação Alostérica/fisiologia , Carbono-Nitrogênio Ligases/metabolismo , Proteínas de Escherichia coli/metabolismo , Simulação de Dinâmica Molecular , Multimerização Proteica/fisiologia , Proteínas Repressoras/metabolismo , Carbono-Nitrogênio Ligases/química , Proteínas de Escherichia coli/química , Estrutura Secundária de Proteína , Proteínas Repressoras/química
8.
EMBO J ; 37(13)2018 07 02.
Artigo em Inglês | MEDLINE | ID: mdl-29724755

RESUMO

Helicobacter pylori infects half of the world's population, and strains that encode the cag type IV secretion system for injection of the oncoprotein CagA into host gastric epithelial cells are associated with elevated levels of cancer. CagA translocation into host cells is dependent on interactions between the H. pylori adhesin protein HopQ and human CEACAMs. Here, we present high-resolution structures of several HopQ-CEACAM complexes and CEACAMs in their monomeric and dimeric forms establishing that HopQ uses a coupled folding and binding mechanism to engage the canonical CEACAM dimerization interface for CEACAM recognition. By combining mutagenesis with biophysical and functional analyses, we show that the modes of CEACAM recognition by HopQ and CEACAMs themselves are starkly different. Our data describe precise molecular mechanisms by which microbes exploit host CEACAMs for infection and enable future development of novel oncoprotein translocation inhibitors and H. pylori-specific antimicrobial agents.


Assuntos
Antígenos de Bactérias/fisiologia , Antígenos CD/fisiologia , Proteínas de Bactérias/fisiologia , Moléculas de Adesão Celular/fisiologia , Helicobacter pylori/fisiologia , Proteínas Oncogênicas/fisiologia , Antígenos CD/química , Proteínas de Bactérias/química , Moléculas de Adesão Celular/química , Células HEK293 , Humanos , Mutagênese , Multimerização Proteica , Transporte Proteico
9.
Biochemistry ; 57(7): 1119-1129, 2018 02 20.
Artigo em Inglês | MEDLINE | ID: mdl-29355305

RESUMO

Small molecules regulate transcription in both eukaryotes and prokaryotes by either enhancing or repressing assembly of transcription regulatory complexes. For allosteric transcription repressors, superrepressor mutants can exhibit increased sensitivity to small molecule corepressors. However, because many transcription regulatory complexes assemble in multiple steps, the superrepressor phenotype can reflect changes in any or all of the individual assembly steps. Escherichia coli biotin operon repression complex assembly, which responds to input biotin concentration, occurs via three coupled equilibria, including corepressor binding, holorepressor dimerization, and binding of the dimer to DNA. A genetic screen has yielded superrepressor mutants that repress biotin operon transcription in vivo at biotin concentrations much lower than those required by the wild type repressor. In this work, isothermal titration calorimetry and sedimentation measurements were used to determine the superrepressor biotin binding and homodimerization properties. The results indicate that, although all variants exhibit biotin binding affinities similar to that measured for BirAwt, five of the six superrepressors show altered homodimerization energetics. Molecular dynamics simulations suggest that the altered dimerization results from perturbation of an electrostatic network that contributes to allosteric activation of BirA for dimerization. Modeling of the multistep repression complex assembly for these proteins reveals that the altered sensitivity of the transcription response to biotin concentration is readily explained solely by the altered superrepressor homodimerization energetics. These results highlight how coupled equilibria enable alterations in a transcription regulatory response to input signal through an indirect mechanism.


Assuntos
Biotina/metabolismo , Carbono-Nitrogênio Ligases/metabolismo , Proteínas de Escherichia coli/metabolismo , Escherichia coli/metabolismo , Mapas de Interação de Proteínas , Proteínas Repressoras/metabolismo , Regulação Alostérica , Carbono-Nitrogênio Ligases/química , Escherichia coli/química , Proteínas de Escherichia coli/química , Simulação de Dinâmica Molecular , Ligação Proteica , Conformação Proteica , Multimerização Proteica , Proteínas Repressoras/química , Termodinâmica
10.
Biochemistry ; 56(34): 4478-4488, 2017 08 29.
Artigo em Inglês | MEDLINE | ID: mdl-28718281

RESUMO

Elucidation of the molecular details of allosteric communication between distant sites in a protein is key to understanding and manipulating many biological regulatory processes. Although protein disorder is acknowledged to play an important thermodynamic role in allostery, the molecular mechanisms by which this disorder is harnessed for long distance communication are known for a limited number of systems. Transcription repression by the Escherichia coli biotin repressor, BirA, is allosterically activated by binding of the small molecule effector biotinoyl-5'-AMP. The effector acts by promoting BirA dimerization, which is a prerequisite for sequence-specific binding to the biotin biosynthetic operon operator sequence. A 30 Å distance separates the effector binding and dimerization surfaces in BirA, and previous studies indicate that allostery is mediated, in part, by disorder-to-order transitions on the two coupled sites. In this work, combined experimental and computational methods have been applied to investigate the molecular basis of allosteric communication in BirA. Double-mutant cycle analysis coupled with thermodynamic measurements indicates functional coupling between residues in disordered loops on the two distant surfaces. All atom molecular dynamics simulations reveal that this coupling occurs through long distance reciprocal modulation of the structure and dynamics of disorder-to-order transitions on the two surfaces.


Assuntos
Monofosfato de Adenosina/análogos & derivados , Biotina/análogos & derivados , Carbono-Nitrogênio Ligases/química , Proteínas de Escherichia coli/química , Escherichia coli/química , Simulação de Dinâmica Molecular , Proteínas Repressoras/química , Monofosfato de Adenosina/química , Monofosfato de Adenosina/genética , Monofosfato de Adenosina/metabolismo , Regulação Alostérica/fisiologia , Substituição de Aminoácidos , Biotina/química , Biotina/genética , Biotina/metabolismo , Carbono-Nitrogênio Ligases/genética , Carbono-Nitrogênio Ligases/metabolismo , Escherichia coli/genética , Escherichia coli/metabolismo , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Mutação de Sentido Incorreto , Ligação Proteica , Domínios Proteicos , Proteínas Repressoras/genética , Proteínas Repressoras/metabolismo
11.
Protein Sci ; 26(8): 1564-1573, 2017 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-28466579

RESUMO

Class II bifunctional biotin protein ligases (BirA), which catalyze post-translational biotinylation and repress transcription initiation, are broadly distributed in eubacteria and archaea. However, it is unclear if these proteins all share the same molecular mechanism of transcription regulation. In Escherichia coli the corepressor biotinoyl-5'-AMP (bio-5'-AMP), which is also the intermediate in biotin transfer, promotes operator binding and resulting transcription repression by enhancing BirA dimerization. Like E. coli BirA (EcBirA), Staphylococcus aureus, and Bacillus subtilis BirA (Sa and BsBirA) repress transcription in vivo in a biotin-dependent manner. In this work, sedimentation equilibrium measurements were performed to investigate the molecular basis of this biotin-responsive transcription regulation. The results reveal that, as observed for EcBirA, Sa, and BsBirA dimerization reactions are significantly enhanced by bio-5'-AMP binding. Thus, the molecular mechanism of the Biotin Regulatory System is conserved in the biotin repressors from these three organisms.


Assuntos
Monofosfato de Adenosina/análogos & derivados , Bacillus subtilis/química , Biotina/análogos & derivados , Carbono-Nitrogênio Ligases/química , Proteínas de Escherichia coli/química , Escherichia coli/química , Proteínas Repressoras/química , Staphylococcus aureus/química , Transcrição Gênica , Monofosfato de Adenosina/química , Monofosfato de Adenosina/metabolismo , Sequência de Aminoácidos , Bacillus subtilis/enzimologia , Bacillus subtilis/genética , Sítios de Ligação , Biotina/química , Biotina/metabolismo , Biotinilação , Carbono-Nitrogênio Ligases/genética , Carbono-Nitrogênio Ligases/metabolismo , Clonagem Molecular , Sequência Conservada , Escherichia coli/enzimologia , Escherichia coli/genética , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Expressão Gênica , Isoenzimas/química , Isoenzimas/genética , Isoenzimas/metabolismo , Cinética , Ligantes , Modelos Moleculares , Ligação Proteica , Conformação Proteica em alfa-Hélice , Domínios e Motivos de Interação entre Proteínas , Multimerização Proteica , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Proteínas Repressoras/genética , Proteínas Repressoras/metabolismo , Alinhamento de Sequência , Homologia de Sequência de Aminoácidos , Staphylococcus aureus/enzimologia , Staphylococcus aureus/genética , Termodinâmica
12.
Int J Med Robot ; 10(2): 180-6, 2014 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-23955848

RESUMO

BACKGROUND: Robots are gradually becoming intelligent tools for surgeons in computer assisted orthopedic surgery. A hands-on robot combining CT-free navigation software and coordinated control has been designed for total knee arthroplasty. METHODS: The hands-on robot is under bilateral force control so that the robot not only follows the force commands from the operator but also shapes the reflected force back to the operator. The proposed coordinated control also defines three operating modes to fulfill intelligent bone cutting by tuning appropriate scaling to the admittance gains. RESULTS: Experimental results demonstrated assistive, resistant and emergent actions to meet various bone cutting conditions by the coordinated controller. CONCLUSIONS: The proposed coordinated controller enables the robot to perform bone cutting more safely, rapidly and accurately compared with being performed by manual bone saw. The intelligent bone cutting has been successfully verified by a cadaver test.


Assuntos
Artroplastia do Joelho/instrumentação , Procedimentos Cirúrgicos Robóticos/instrumentação , Desenho de Equipamento , Humanos , Articulação do Joelho/anatomia & histologia , Articulação do Joelho/cirurgia , Software , Interface Usuário-Computador
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...