Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nutr Metab (Lond) ; 21(1): 49, 2024 Jul 18.
Artigo em Inglês | MEDLINE | ID: mdl-39026248

RESUMO

BACKGROUND: Natural compounds can positively impact health, and various studies suggest that they regulate glucose‒lipid metabolism by influencing short-chain fatty acids (SCFAs). This metabolism is key to maintaining energy balance and normal physiological functions in the body. This review explores how SCFAs regulate glucose and lipid metabolism and the natural compounds that can modulate these processes through SCFAs. This provides a healthier approach to treating glucose and lipid metabolism disorders in the future. METHODS: This article reviews relevant literature on SCFAs and glycolipid metabolism from PubMed and the Web of Science Core Collection (WoSCC). It also highlights a range of natural compounds, including polysaccharides, anthocyanins, quercetins, resveratrols, carotenoids, and betaines, that can regulate glycolipid metabolism through modulation of the SCFA pathway. RESULTS: Natural compounds enrich SCFA-producing bacteria, inhibit harmful bacteria, and regulate operational taxonomic unit (OTU) abundance and the intestinal transport rate in the gut microbiota to affect SCFA content in the intestine. However, most studies have been conducted in animals, lack clinical trials, and involve fewer natural compounds that target SCFAs. More research is needed to support the conclusions and to develop healthier interventions. CONCLUSIONS: SCFAs are crucial for human health and are produced mainly by the gut microbiota via dietary fiber fermentation. Eating foods rich in natural compounds, including fruits, vegetables, tea, and coarse fiber foods, can hinder harmful intestinal bacterial growth and promote beneficial bacterial proliferation, thus increasing SCFA levels and regulating glucose and lipid metabolism. By investigating how these compounds impact glycolipid metabolism via the SCFA pathway, novel insights and directions for treating glucolipid metabolism disorders can be provided.

2.
World J Surg Oncol ; 21(1): 158, 2023 May 24.
Artigo em Inglês | MEDLINE | ID: mdl-37221610

RESUMO

BACKGROUND: Multiple primary malignant tumors (MPMTs), usually associated with worse malignant behavior and prognosis comparing to a single primary tumor, and have recently been found to have an increasing incidence globally. However, the pathogenesis of MPMTs remains to be clarified. Here, we report a unique case of the coexistence of malignant melanoma (MM), papillary thyroid carcinoma (PTC), and clear-cell renal cell carcinoma (ccRCC) along with our perceptions on its pathogenesis. CASE PRESENTATION: The case reported is of a 59-year-old male patient with unilateral nasal obstruction as well as a renal occupying lesion. Positron emission tomography-computed tomography (PET-CT) revealed a palpable mass of 32 × 30 mm on the posterior and left walls of the nasopharynx. In addition, an isodense nodule was observed in the right superior renal pole, approximately 25 mm in diameter, as well as a slightly hypodense shadow in the right leaf of the thyroid, approximately 13 mm in diameter. Nasal endoscopy and magnetic resonance imaging (MRI) confirmed the existence of a nasopharyngeal neoplasm. Afterward, biopsies of the nasopharyngeal neoplasm, thyroid gland and kidney were performed, and the patient was diagnosed with MM, PTC, and ccRCC according to the pathological and immunohistochemical results. Moreover, mutation of BRAFV600E was detected in bilateral thyroid tissues, and amplification of both CCND1 and MYC oncogenes were detected in the nasopharyngeal melanoma. After chemotherapy, the patient is now in good overall condition. CONCLUSIONS: This is the first reported case of a patient with the co-existence of MM, PTC and ccRCC undergoing chemotherapy with a favorable prognosis. Herein, we suggest that such a combination may be non-random, as for mutation of BRAFV600E might account for the co-occurrence of PTC and MM, while mutations of CCND1 and MYC cause the coexistence of MM and ccRCC. This finding may provide valuable guidance on the diagnosis and treatment of such disease, as well as the prevention of developing a second or third tumor for patients with a single primary.


Assuntos
Carcinoma de Células Renais , Carcinoma , Neoplasias Renais , Neoplasias Nasofaríngeas , Neoplasias Primárias Múltiplas , Neoplasias da Glândula Tireoide , Masculino , Humanos , Pessoa de Meia-Idade , Proteínas Proto-Oncogênicas B-raf , Tomografia por Emissão de Pósitrons combinada à Tomografia Computadorizada , Câncer Papilífero da Tireoide , Mutação , Ciclina D1 , Melanoma Maligno Cutâneo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...