Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Opt Express ; 31(10): 15438-15448, 2023 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-37157645

RESUMO

This paper presents an experimental study on the laser-induced atomic and close-to-atomic scale (ACS) structure of 4H-SiC using a capillary-discharged extreme ultraviolet (EUV) pulse of 46.9 nm wavelength. The modification mechanism at the ACS is investigated through molecular dynamics (MD) simulations. The irradiated surface is measured via scanning electron microscopy and atomic force microscopy. The possible changes in the crystalline structure are investigated using Raman spectroscopy and scanning transmission electron microscopy. The results show that the stripe-like structure is formed due to the uneven energy distribution of a beam. The laser-induced periodic surface structure at the ACS is first presented. The detected periodic surface structures with a peak-to-peak height of only 0.4 nm show periods of 190, 380, and 760 nm, which are approximately 4, 8, and 16 times the wavelength. In addition, no lattice damage is detected in the laser-affected zone. The study shows that the EUV pulse is a potential approach for the ACS manufacturing of semiconductors.

2.
J Chem Phys ; 158(10): 104702, 2023 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-36922148

RESUMO

Pulsed lasers are a powerful tool for fabricating silicon carbide (SiC) that has a hard and brittle nature, but oxidation is usually unavoidable. This study presents an exploration of the oxidation mechanism of 4H-SiC in oxygen and water under different temperatures via reactive force field molecular dynamics. Single pulse irradiation experiments were conducted to study the oxygen content of the laser-affected zone through energy dispersive x-ray spectrometry. The results show that laser-induced thermal oxidation is a complex dynamic process with the interactions among H, C, O, and Si atoms. The oxidation zone includes an oxide layer, a graphite layer, and a C-rich layer. With an increase in oxygen concentration, the amorphous oxide layer changes from silicon oxide to silicon dioxide. In addition, the formation of carbon clusters at the interface between SiOx and C-rich layers promotes the desorption of the oxide layer. The mechanism revealed in this study provides theoretical guidance for high-quality processing of 4H-SiC at atomic and close-to-atomic scales.

3.
Adv Mater ; 35(2): e2200538, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-35962983

RESUMO

As the world steps into the era of Internet of Things (IoT), numerous miniaturized electronic devices requiring autonomous micropower sources will be connected to the internet. All-solid-state thin-film lithium/lithium-ion microbatteries (TFBs) combining solid-state battery architecture and thin-film manufacturing are regarded as ideal on-chip power sources for IoT-enabled microelectronic devices. However, unlike commercialized lithium-ion batteries, TFBs are still in the immature state, and new advances in materials, manufacturing, and structure are required to improve their performance. In this review, the current status and existing challenges of TFBs for practical application in internet-connected devices for the IoT are discussed. Recent progress in thin-film deposition, electrode and electrolyte materials, interface modification, and 3D architecture design is comprehensively summarized and discussed, with emphasis on state-of-the-art strategies to improve the areal capacity and cycling stability of TFBs. Moreover, to be suitable power sources for IoT devices, the design of next-generation TFBs should consider multiple functionalities, including wide working temperature range, good flexibility, high transparency, and integration with energy-harvesting systems. Perspectives on designing practically accessible TFBs are provided, which may guide the future development of reliable power sources for IoT devices.

4.
Opt Express ; 30(22): 40413-40424, 2022 Oct 24.
Artigo em Inglês | MEDLINE | ID: mdl-36298975

RESUMO

Manufacturing-induced sidewall roughness has a significant impact on the diffraction efficiency of extreme ultraviolet (EUV) gratings and masks, which could be evaluated by a Debye-Waller damping factor. The rough profile models of line structures are always parallel to the surface for the reflective elements. In this manuscript, a model of rough lines along the thickness direction is established, which cannot be ignored for high aspect ratio transmission gratings. Numerical calculations are carried out using both a rigorous model and a Fraunhofer approximation model. The two models agree with each other on the low-order transmission efficiencies, and the fitted Debye-Waller factor indicates a larger roughness value than that of the model due to the absorption of EUV irradiation for 90° sidewall angle. When the sidewall angle is smaller than 88°, an extra degree of freedom is introduced to the traditional Debye-Waller factor-based formula. The +1-order transmission efficiency and absorptivity with smooth and rough sidewalls are also analyzed, as well as the effect of incidence angle, wavelength and grating thickness.

5.
Cell Death Discov ; 8(1): 223, 2022 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-35461336

RESUMO

Exosomes are known to transmit microRNAs (miRNAs) to affect human cancer progression, and miR-17-5p has been manifested to exert facilitated effects on colorectal cancer (CRC) progression, while the role of tumor stem cells-derived exosomal miR-17-5p in CRC remains unknown. We aim to explore the effect of CRC stem cells-derived exosomes (CRCSC-exos) conveying miR-17-5p on CRC. The exosomes were isolated from CRC stem cells and identified. HCT116 cells were transfected with speckle-type POZ protein (SPOP) interfering vector or co-cultured with exosomes carrying miR-17-5p mimic/inhibitor. Then, the proliferation, migration, invasion, and apoptosis of the cells were determined. The xenograft mouse model was constructed using BALB/C mice and the serum levels of T cell cytokines were assessed. Expression of miR-17-5p, SPOP, CD4, CD8 and programmed death ligand 1 (PD-L1) was detected. The targeting relationship between miR-17-5p and SPOP was verified. MiR-17-5p was upregulated and SPOP was downregulated in CRC tissues. CRCSC-exos transmitted miR-17-5p to HCT116 cells to promote malignant behaviors and suppress anti-tumor immunity of HCT116 cells. The overexpressed SPOP exerted opposite effects. SPOP was confirmed as a target gene of miR-17-5p. Upregulated CRCSC-exosomal miR-17-5p inhibits SPOP to promote tumor cell growth and dampen anti-tumor immunity in CRC through promoting PD-L1.

6.
Nanomanuf Metrol ; 4(4): 216-225, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34993418

RESUMO

This paper presents a new approach for material removal on silicon at atomic and close-to-atomic scale assisted by photons. The corresponding mechanisms are also investigated. The proposed approach consists of two sequential steps: surface modification and photon irradiation. The back bonds of silicon atoms are first weakened by the chemisorption of chlorine and then broken by photon energy, leading to the desorption of chlorinated silicon. The mechanisms of photon-induced desorption of chlorinated silicon, i.e., SiCl2 and SiCl, are explained by two models: the Menzel-Gomer-Redhead (MGR) and Antoniewicz models. The desorption probability associated with the two models is numerically calculated by solving the Liouville-von Neumann equations for open quantum systems. The calculation accuracy is verified by comparison with the results in literatures in the case of the NO/Pt (111) system. The calculation method is then applied to the cases of SiCl2/Si and SiCl/Si systems. The results show that the value of desorption probability first increases dramatically and then saturates to a stable value within hundreds of femtoseconds after excitation. The desorption probability shows a super-linear dependence on the lifetime of excited states.

7.
Nanoscale Res Lett ; 12(1): 41, 2017 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-28091952

RESUMO

Materials with specific nanometric layers are of great value in both theoretical and applied research. The nanometric layer could have a significant influence on the response to the mechanical loading. In this paper, the nanometric cutting on the layered systems of silicon has been studied by molecular dynamics. This kind of composite structure with amorphous layer and crystalline substrate is important for nanomachining. Material deformation, stress status, and chip formation, which are the key issues in nano-cutting, are analyzed. A new chip formation mechanism, i.e., the mixture of extrusion and shear, has been observed. In addition, from the perspective of engineering, some specific composite models show the desired properties due to the low subsurface damage or large material removal rate. The results enrich the cutting theory and provide guidance on nanometric machining.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...