Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Digit Imaging ; 18(1): 28-36, 2005 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-15937718

RESUMO

This article demonstrates a gateway system for converting image fusion results to digital imaging and communication in medicine (DICOM) objects. For the purpose of standardization and integration, we have followed the guidelines of the Integrated Healthcare Enterprise technical framework and developed a DICOM gateway. The gateway system combines data from hospital information system, image fusion results, and the information generated itself to constitute new DICOM objects. All the mandatory tags defined in standard DICOM object were generated in the gateway system. The gateway system will generate two series of SOP instances of each PET-MR fusion result; SOP (Service Object Pair) one for the reconstructed magnetic resonance (MR) images and the other for position emission tomography (PET) images. The size, resolution, spatial coordinates, and number of frames are the same in both series of SOP instances. Every new generated MR image exactly fits with one of the reconstructed PET images. Those DICOM images are stored to the picture archiving and communication system (PACS) server by means of standard DICOM protocols. When those images are retrieved and viewed by standard DICOM viewing systems, both images can be viewed at the same anatomy location. This system is useful for precise diagnosis and therapy.


Assuntos
Redes de Comunicação de Computadores , Processamento de Imagem Assistida por Computador , Imageamento por Ressonância Magnética , Tomografia por Emissão de Pósitrons , Integração de Sistemas , Sistemas de Gerenciamento de Base de Dados , Humanos , Armazenamento e Recuperação da Informação , Sistemas de Informação em Radiologia
3.
Eur J Nucl Med Mol Imaging ; 30(6): 812-8, 2003 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-12692690

RESUMO

We present a system of image co-registration and its validation in phantom and volunteer studies. The system co-registered images via six novel non-invasive and non-radioactive external markers. The fiducial markers were attached with sponge bases on the skin surface of the phantom and the volunteers in a non-collinear and non-coplanar array. The subjects were scanned with a 1.5-T magnetic resonance (MR) imager using 2D spin-echo T1-weighted (SE) and 3D spoiled gradient recalled pulse sequences (SPGR) and with a positron emission tomography (PET) scanner for transmission imaging (TI) and emission imaging (EI). The sponge bases created radiolucent gaps with good contrast between the fiducial markers and skin surface. They made the markers visible with clear edge boundaries on both PET and MR images. The images to be registered were rescaled, interpolated, reformatted and followed by point-to-point registration for coordinate determination and the estimation of geometrical transformation and fiducial registration errors (FREs) via the fiducial markers. The images formed four matched pairs of inter-modality (SE-TI, SPGR-TI, SE-EI and SPGR-EI) and two pairs of intra-modality (SE-SPGR, TI-EI) imaging for direct co-registration. The parameters for direct co-registration of SE-TI and SPRG-TI were subsequently used as a bridge and applied for indirect co-registration of SE with EI (SE-EI(TI)) and SPGR with EI (SPGR-EI(TI)), respectively. The overall FREs of the phantom were, respectively, 1.50 mm for inter-modality and 1.10 mm for intra-modality direct co-registration. Those of volunteers were, respectively, 1.79 mm for inter-modality and 1.21 mm for intra-modality direct co-registration. For indirect co-registration, the overall FREs of the phantom were 2.53 mm (SE-EI(TI)) and 2.28 (SPGR-EI(TI)) mm; those of volunteers were 2.84 mm (SE-EI(TI)) and 2.81 mm (SPGR-EI(TI)). The errors of direct co-registration were smaller than those of indirect co-registration; the errors of phantom studies, MR-EI and SPGR-PET were smaller than those of the volunteer studies, MR-TI and SE-PET, respectively (all P<0.01, paired-difference test). In conclusion, motion artefacts, imaging blurring and spatial resolution of imaging remained the key factors affecting the accuracy of co-registration. High-accuracy indirect co-registration is provided by using non-invasive and non-radioactive external fiducial markers. The errors were less than 3 mm for both phantom and volunteer studies. The system is applicable for imaging co-registration of inter-modality non-dual imaging, inter-modality multi-tracer imaging and intra-modality multiple parameter images in clinical practice.


Assuntos
Encéfalo/diagnóstico por imagem , Mapeamento Encefálico , Fluordesoxiglucose F18/farmacocinética , Humanos , Imagens de Fantasmas , Compostos Radiofarmacêuticos/farmacocinética , Reprodutibilidade dos Testes , Distribuição Tecidual , Tomografia Computadorizada de Emissão/instrumentação , Tomografia Computadorizada por Raios X/instrumentação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...