Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Assunto principal
Intervalo de ano de publicação
1.
Phys Rev Lett ; 130(22): 220602, 2023 Jun 02.
Artigo em Inglês | MEDLINE | ID: mdl-37327421

RESUMO

The microscopic description of 1/f magnetic flux noise in superconducting circuits has remained an open question for several decades despite extensive experimental and theoretical investigation. Recent progress in superconducting devices for quantum information has highlighted the need to mitigate sources of qubit decoherence, driving a renewed interest in understanding the underlying noise mechanism(s). Though a consensus has emerged attributing flux noise to surface spins, their identity and interaction mechanisms remain unclear, prompting further study. Here, we apply weak in-plane magnetic fields to a capacitively shunted flux qubit (where the Zeeman splitting of surface spins lies below the device temperature) and study the flux-noise-limited qubit dephasing, revealing previously unexplored trends that may shed light on the dynamics behind the emergent 1/f noise. Notably, we observe an enhancement (suppression) of the spin-echo (Ramsey) pure-dephasing time in fields up to B=100 G. With direct noise spectroscopy, we further observe a transition from a 1/f to approximately Lorentzian frequency dependence below 10 Hz and a reduction of the noise above 1 MHz with increasing magnetic field. We suggest that these trends are qualitatively consistent with an increase of spin cluster sizes with magnetic field. These results should help to inform a complete microscopic theory of 1/f flux noise in superconducting circuits.


Assuntos
Campos Magnéticos , Temperatura
2.
Nat Commun ; 12(1): 967, 2021 Feb 11.
Artigo em Inglês | MEDLINE | ID: mdl-33574240

RESUMO

System noise identification is crucial to the engineering of robust quantum systems. Although existing quantum noise spectroscopy (QNS) protocols measure an aggregate amount of noise affecting a quantum system, they generally cannot distinguish between the underlying processes that contribute to it. Here, we propose and experimentally validate a spin-locking-based QNS protocol that exploits the multi-level energy structure of a superconducting qubit to achieve two notable advances. First, our protocol extends the spectral range of weakly anharmonic qubit spectrometers beyond the present limitations set by their lack of strong anharmonicity. Second, the additional information gained from probing the higher-excited levels enables us to identify and distinguish contributions from different underlying noise mechanisms.

3.
Adv Mater ; 32(29): e2000953, 2020 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-32519397

RESUMO

Advanced microscopy and/or spectroscopy tools play indispensable roles in nanoscience and nanotechnology research, as they provide rich information about material processes and properties. However, the interpretation of imaging data heavily relies on the "intuition" of experienced researchers. As a result, many of the deep graphical features obtained through these tools are often unused because of difficulties in processing the data and finding the correlations. Such challenges can be well addressed by deep learning. In this work, the optical characterization of 2D materials is used as a case study, and a neural-network-based algorithm is demonstrated for the material and thickness identification of 2D materials with high prediction accuracy and real-time processing capability. Further analysis shows that the trained network can extract deep graphical features such as contrast, color, edges, shapes, flake sizes, and their distributions, based on which an ensemble approach is developed to predict the most relevant physical properties of 2D materials. Finally, a transfer learning technique is applied to adapt the pretrained network to other optical identification applications. This artificial-intelligence-based material characterization approach is a powerful tool that would speed up the preparation, initial characterization of 2D materials and other nanomaterials, and potentially accelerate new material discoveries.

4.
Nat Mater ; 18(8): 775-776, 2019 08.
Artigo em Inglês | MEDLINE | ID: mdl-31332315
5.
Nat Nanotechnol ; 14(2): 120-125, 2019 02.
Artigo em Inglês | MEDLINE | ID: mdl-30598526

RESUMO

Quantum coherence and control is foundational to the science and engineering of quantum systems1,2. In van der Waals materials, the collective coherent behaviour of carriers has been probed successfully by transport measurements3-6. However, temporal coherence and control, as exemplified by manipulating a single quantum degree of freedom, remains to be verified. Here we demonstrate such coherence and control of a superconducting circuit incorporating graphene-based Josephson junctions. Furthermore, we show that this device can be operated as a voltage-tunable transmon qubit7-9, whose spectrum reflects the electronic properties of massless Dirac fermions travelling ballistically4,5. In addition to the potential for advancing extensible quantum computing technology, our results represent a new approach to studying van der Waals materials using microwave photons in coherent quantum circuits.

6.
Nano Lett ; 15(3): 1898-903, 2015 Mar 11.
Artigo em Inglês | MEDLINE | ID: mdl-25654184

RESUMO

We report high quality graphene and WSe2 devices encapsulated between two hexagonal boron nitride (hBN) flakes using a pick-up method with etched hBN flakes. Picking up prepatterned hBN flakes to be used as a gate dielectric or mask for other 2D materials opens new possibilities for the design and fabrication of 2D heterostructures. In this Letter, we demonstrate this technique in two ways: first, a dual-gated graphene device that is encapsulated between an hBN substrate and prepatterned hBN strips. The conductance of the graphene device shows pronounced Fabry-Pérot oscillations as a function of carrier density, which implies strong quantum confinement and ballistic transport in the locally gated region. Second, we describe a WSe2 device encapsulated in hBN with the top hBN patterned as a mask for the channel of a Hall bar. Ionic liquid selectively tunes the carrier density of the contact region of the device, while the hBN mask allows independent tunability of the contact region for low contact resistance. Hall mobility larger than 600 cm(2)/(V·s) for few-layer p-type WSe2 at 220 K is measured, the highest mobility of a thin WSe2 device reported to date. The observations of ballistic transport in graphene and high mobility in WSe2 confirm pick-up of prepatterned hBN as a versatile technique to fabricate ultraclean devices with high quality contact.

7.
Nat Mater ; 13(8): 786-9, 2014 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-24776537

RESUMO

The crystal structure of a material plays an important role in determining its electronic properties. Changing from one crystal structure to another involves a phase transition that is usually controlled by a state variable such as temperature or pressure. In the case of trilayer graphene, there are two common stacking configurations (Bernal and rhombohedral) that exhibit very different electronic properties. In graphene flakes with both stacking configurations, the region between them consists of a localized strain soliton where the carbon atoms of one graphene layer shift by the carbon-carbon bond distance. Here we show the ability to move this strain soliton with a perpendicular electric field and hence control the stacking configuration of trilayer graphene with only an external voltage. Moreover, we find that the free-energy difference between the two stacking configurations scales quadratically with electric field, and thus rhombohedral stacking is favoured as the electric field increases. This ability to control the stacking order in graphene opens the way to new devices that combine structural and electrical properties.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...