Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Total Environ ; 849: 157818, 2022 Nov 25.
Artigo em Inglês | MEDLINE | ID: mdl-35940272

RESUMO

Traffic-related air pollutants (TRAP) including nitric oxide (NO), nitrogen oxide (NOx), carbon monoxide (CO), ultrafine particles (UFP), black carbon (BC), and fine particulate matter (PM2.5) were simultaneously measured at near-road sites located at 10 m (NR10) and 150 m (NR150) from the same side of a busy highway to provide insights into the influence of winter time meteorology on exposure to TRAP near major roads. The spatial variabilities of TRAP were examined for ambient temperatures ranging from -11 °C to +19 °C under downwind, upwind, and stagnant air conditions. The downwind TRAP concentrations at NR10 were higher than the upwind concentrations by a factor of 1.4 for CO to 13 for NO. Despite steep downwind reductions of 38 % to 75 % within 150 m, the downwind concentrations at NR150 were still well above upwind concentrations. Near-road concentrations of NOx and UFP increased as ambient temperatures decreased due to elevated emissions of NOx and UFP from vehicles under colder temperatures. Traffic-related PM2.5 sources were identified using hourly PM2.5 chemical components including organic/inorganic aerosol and trace metals at both sites. The downwind concentrations of primary PM2.5 species related to tailpipe and non-tailpipe emissions at NR10 were substantially higher than the upwind concentrations by a factor of 4 and 32, respectively. Traffic-related PM2.5 sources accounted for almost half of total PM2.5 mass under downwind conditions, leading to a rapid change of PM2.5 chemical composition. Under stagnant air conditions, the concentrations of most TRAP and related PM2.5 including tailpipe emissions, secondary nitrate, and organic aerosol were comparable to, or even greater than, the downwind concentrations under windy conditions, especially at NR150. This study demonstrates that stagnant air conditions further widen the traffic-influenced area and people living near major roadways may experience increased risks from elevated exposure to traffic emissions during cold and stagnant winter conditions.


Assuntos
Poluentes Atmosféricos , Poluição do Ar , Aerossóis , Poluentes Atmosféricos/análise , Poluição do Ar/análise , Monóxido de Carbono , Monitoramento Ambiental , Humanos , Nitratos , Óxido Nítrico , Óxidos de Nitrogênio/análise , Material Particulado/análise , Emissões de Veículos/análise
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...