Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 50
Filtrar
1.
PLoS One ; 19(5): e0303010, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38748682

RESUMO

Diabetic Retinopathy (DR) is the leading cause of vision loss in working-age adults. The hallmark features of DR include vascular leakage, capillary loss, retinal ischemia, and aberrant neovascularization. Although the pathophysiology is not fully understood, accumulating evidence supports elevated reactive oxygen species associated with increased activity of NADPH oxidase 4 (Nox4) as major drivers of disease progression. Previously, we have shown that Nox4 upregulation in retinal endothelial cells by diabetes leads to increased vascular leakage by an unknown mechanism. Platelet endothelial cell adhesion molecule 1 (PECAM-1) is a cell surface molecule that is highly expressed in endothelial cells and regulates endothelial barrier function. In the present study, using endothelial cell-specific human Nox4 transgenic (TG) mice and endothelial cell-specific Nox4 conditional knockout (cKO) mice, we investigated the impact of Nox4 upregulation on PECAM-1 expression in mouse retinas and brain microvascular endothelial cells (BMECs). Additionally, cultured human retinal endothelial cells (HRECs) transduced with adenovirus overexpressing human Nox4 were used in the study. We found that overexpression of Nox4 increases PECAM-1 mRNA but has no effect on its protein expression in the mouse retina, BMECs, or HRECs. Furthermore, PECAM-1 mRNA and protein expression was unchanged in BMECs isolated from cKO mice compared to wild type (WT) mice with or without 2 months of diabetes. Together, these findings do not support a significant role of Nox4 in the regulation of PECAM-1 expression in the diabetic retina and endothelial cells. Further studies are warranted to elucidate the mechanism of Nox4-induced vascular leakage by investigating other intercellular junctional proteins in endothelial cells and their implications in the pathophysiology of diabetic retinopathy.


Assuntos
Retinopatia Diabética , Células Endoteliais , NADPH Oxidase 4 , Molécula-1 de Adesão Celular Endotelial a Plaquetas , Regulação para Cima , Animais , NADPH Oxidase 4/metabolismo , NADPH Oxidase 4/genética , Retinopatia Diabética/metabolismo , Retinopatia Diabética/genética , Retinopatia Diabética/patologia , Camundongos , Humanos , Molécula-1 de Adesão Celular Endotelial a Plaquetas/metabolismo , Molécula-1 de Adesão Celular Endotelial a Plaquetas/genética , Células Endoteliais/metabolismo , Camundongos Knockout , NADPH Oxidases/metabolismo , NADPH Oxidases/genética , Retina/metabolismo , Retina/patologia , Modelos Animais de Doenças , Camundongos Transgênicos
2.
Invest Ophthalmol Vis Sci ; 64(14): 40, 2023 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-38015176

RESUMO

Purpose: Diabetic retinopathy (DR) is a leading cause of blindness in working-age adults characterized by retinal dysfunction and neurovascular degeneration. We previously reported that deletion of X-box binding protein 1 (XBP1) leads to accelerated retinal neurodegeneration in diabetes; however, the mechanisms remain elusive. The goal of this study is to determine the role of XBP1 in the regulation of photoreceptor synaptic integrity in early DR. Methods: Diabetes was induced by streptozotocin in retina-specific XBP1 conditional knockout (cKO) or wild-type (WT) mice to generate diabetic cKO (cKO/DM) or WT/DM mice for comparison with nondiabetic cKO (cKO/NDM) and WT/NDM mice. Retinal morphology, structure, and function were assessed by immunohistochemistry, optical coherence tomography, and electroretinogram (ERG) after 3 months of diabetes. The synapses between photoreceptors and bipolar cells were examined by confocal microscopy, and synaptic integrity was quantified using the QUANTOS algorithm. Results: We found a thinning of the outer nuclear layer and a decline in the b-wave amplitude in dark- and light-adapted ERG in cKO/DM mice compared to all other groups. In line with these changes, cKO mice showed increased loss of synaptic integrity compared to WT mice, regardless of diabetes status. In searching for candidate molecules responsible for the loss of photoreceptor synaptic integrity in diabetic and XBP1-deficient retinas, we found decreased mRNA and protein levels of DLG4/PSD-95 in cKO/DM retina compared to WT/DM. Conclusions: These findings suggest that XBP1 is a crucial regulator in maintaining synaptic integrity and retinal function, possibly through regulation of synaptic scaffold proteins.


Assuntos
Diabetes Mellitus , Retinopatia Diabética , Proteína 1 de Ligação a X-Box , Animais , Camundongos , Algoritmos , Retinopatia Diabética/genética , Eletrorretinografia , Retina , Proteína 1 de Ligação a X-Box/genética
3.
Cells ; 12(12)2023 06 06.
Artigo em Inglês | MEDLINE | ID: mdl-37371028

RESUMO

p58IPK is a multifaceted endoplasmic reticulum (ER) chaperone and a regulator of eIF2α kinases involved in a wide range of cellular processes including protein synthesis, ER stress response, and macrophage-mediated inflammation. Systemic deletion of p58IPK leads to age-related loss of retinal ganglion cells (RGC) and exacerbates RGC damage induced by ischemia/reperfusion and increased intraocular pressure (IOP), suggesting a protective role of p58IPK in the retina. However, the mechanisms remain elusive. Herein, we investigated the cellular mechanisms underlying the neuroprotection action of p58IPK using conditional knockout (cKO) mouse lines where p58IPK is deleted in retinal neurons (Chx10-p58IPK cKO) or in myeloid cells (Lyz2-p58IPK cKO). In addition, we overexpressed p58IPK by adeno-associated virus (AAV) in the retina to examine the effect of p58IPK on RGC survival after ocular hypertension (OHT) in wild type (WT) mice. Our results show that overexpression of p58IPK by AAV significantly improved RGC survival after OHT in WT mice, suggesting a protective effect of p58IPK on reducing RGC injury. Conditional knockout of p58IPK in retinal neurons or in myeloid cells did not alter retinal structure or cellular composition. However, a significant reduction in the b wave of light-adapted electroretinogram (ERG) was observed in Chx10-p58IPK cKO mice. Deletion of p58IPK in retinal neurons exacerbates RGC loss at 14 days after OHT. In contrast, deficiency of p58IPK in myeloid cells increased the microglia/macrophage activation but had no effect on RGC loss. We conclude that deletion of p58IPK in macrophages increases their activation, but does not influence RGC survival. These results suggest that the neuroprotective action of p58IPK is mediated by its expression in retinal neurons, but not in macrophages. Therefore, targeting p58IPK specifically in retinal neurons is a promising approach for the treatment of neurodegenerative retinal diseases including glaucoma.


Assuntos
Glaucoma , Hipertensão Ocular , Animais , Camundongos , Proteínas de Choque Térmico HSP40 , Ativação de Macrófagos , Macrófagos/metabolismo , Microglia/metabolismo , Células Ganglionares da Retina/metabolismo
4.
Diabetes ; 72(1): 112-125, 2023 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-36321974

RESUMO

NADPH oxidase 4 (Nox4) is a major source of reactive oxygen species (ROS) in retinal endothelial cells (ECs) and is upregulated under hyperglycemic and hypoxic conditions. However, the role of endothelial Nox4 upregulation in long-term retinal blood vessel damage in diabetic retinopathy (DR) remains undefined. Here, we attempted to address this question using humanized EC-specific Nox4 transgenic (hNox4EC-Tg) and EC-specific Nox4 knockout (Nox4EC-KO) mouse models. Our results show that hNox4EC-Tg mice at age of 10-12 months exhibited increased tortuosity of retinal blood vessels, focal vascular leakage, and acellular capillary formation. In vitro study revealed enhanced apoptosis in brain microvascular ECs derived from hNox4EC-Tg mice, concomitant with increased mitochondrial ROS, elevated lipid peroxidation, decreased mitochondrial membrane potential, and reduced mitochondrial respiratory function. In contrast, EC-specific deletion of Nox4 decreased mitochondrial ROS generation, alleviated mitochondrial damage, reduced EC apoptosis, and protected the retina from acellular capillary formation and vascular hyperpermeability in a streptozotocin-induced diabetes mouse model. These findings suggest that sustained upregulation of Nox4 in the endothelium contributes to retinal vascular pathology in diabetes, at least in part, through impairing mitochondrial function. Normalization of Nox4 expression in ECs may provide a new approach for prevention of vascular injury in DR.


Assuntos
Diabetes Mellitus Experimental , Diabetes Mellitus Tipo 1 , Retinopatia Diabética , Camundongos , Animais , NADPH Oxidase 4/genética , NADPH Oxidase 4/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Regulação para Cima , Células Endoteliais/metabolismo , Diabetes Mellitus Tipo 1/metabolismo , NADPH Oxidases/genética , NADPH Oxidases/metabolismo , Retinopatia Diabética/metabolismo , Diabetes Mellitus Experimental/metabolismo , Modelos Animais de Doenças , Endotélio Vascular/metabolismo
5.
Cells ; 11(18)2022 09 09.
Artigo em Inglês | MEDLINE | ID: mdl-36139394

RESUMO

The mitochondria-associated endoplasmic reticulum (ER) membrane (MAM) is the physical contact site between the ER and the mitochondria and plays a vital role in the regulation of calcium signaling, bioenergetics, and inflammation. Disturbances in these processes and dysregulation of the ER and mitochondrial homeostasis contribute to the pathogenesis of diabetic retinopathy (DR). However, few studies have examined the impact of diabetes on the retinal MAM and its implication in DR pathogenesis. In the present study, we investigated the proteomic changes in retinal MAM from Long Evans rats with streptozotocin-induced long-term Type 1 diabetes. Furthermore, we performed in-depth bioinformatic analysis to identify key MAM proteins and pathways that are potentially implicated in retinal inflammation, angiogenesis, and neurodegeneration. A total of 2664 unique proteins were quantified using IonStar proteomics-pipeline in rat retinal MAM, among which 179 proteins showed significant changes in diabetes. Functional annotation revealed that the 179 proteins are involved in important biological processes such as cell survival, inflammatory response, and cellular maintenance, as well as multiple disease-relevant signaling pathways, e.g., integrin signaling, leukocyte extravasation, PPAR, PTEN, and RhoGDI signaling. Our study provides comprehensive information on MAM protein changes in diabetic retinas, which is helpful for understanding the mechanisms of metabolic dysfunction and retinal cell injury in DR.


Assuntos
Diabetes Mellitus , Degeneração Retiniana , Animais , Sinalização do Cálcio , Diabetes Mellitus/metabolismo , Retículo Endoplasmático/metabolismo , Inflamação/metabolismo , Integrinas/metabolismo , Mitocôndrias/metabolismo , Receptores Ativados por Proliferador de Peroxissomo/metabolismo , Proteômica , Ratos , Ratos Long-Evans , Degeneração Retiniana/metabolismo , Estreptozocina , Inibidores da Dissociação do Nucleotídeo Guanina rho-Específico/metabolismo
6.
Mol Neurodegener ; 17(1): 25, 2022 03 28.
Artigo em Inglês | MEDLINE | ID: mdl-35346303

RESUMO

BACKGROUND: The retina, as part of the central nervous system (CNS) with limited capacity for self-reparation and regeneration in mammals, is under cumulative environmental stress due to high-energy demands and rapid protein turnover. These stressors disrupt the cellular protein and metabolic homeostasis, which, if not alleviated, can lead to dysfunction and cell death of retinal neurons. One primary cellular stress response is the highly conserved unfolded protein response (UPR). The UPR acts through three main signaling pathways in an attempt to restore the protein homeostasis in the endoplasmic reticulum (ER) by various means, including but not limited to, reducing protein translation, increasing protein-folding capacity, and promoting misfolded protein degradation. Moreover, recent work has identified a novel function of the UPR in regulation of cellular metabolism and mitochondrial function, disturbance of which contributes to neuronal degeneration and dysfunction. The role of the UPR in retinal neurons during aging and under disease conditions in age-related macular degeneration (AMD), retinitis pigmentosa (RP), glaucoma, and diabetic retinopathy (DR) has been explored over the past two decades. Each of the disease conditions and their corresponding animal models provide distinct challenges and unique opportunities to gain a better understanding of the role of the UPR in the maintenance of retinal health and function. METHOD: We performed an extensive literature search on PubMed and Google Scholar using the following keywords: unfolded protein response, metabolism, ER stress, retinal degeneration, aging, age-related macular degeneration, retinitis pigmentosa, glaucoma, diabetic retinopathy. RESULTS AND CONCLUSION: We summarize recent advances in understanding cellular stress response, in particular the UPR, in retinal diseases, highlighting the potential roles of UPR pathways in regulation of cellular metabolism and mitochondrial function in retinal neurons. Further, we provide perspective on the promise and challenges for targeting the UPR pathways as a new therapeutic approach in age- and disease-related retinal degeneration.


Assuntos
Degeneração Retiniana , Animais , Retículo Endoplasmático/metabolismo , Estresse do Retículo Endoplasmático , Mamíferos , Degeneração Retiniana/metabolismo , Transdução de Sinais/fisiologia , Resposta a Proteínas não Dobradas
7.
Neural Regen Res ; 17(9): 1875-1880, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-35142661

RESUMO

Retinal disorders are a group of ocular diseases whose onset is associated with a number of aberrant molecular and cellular processes or physical damages that affect retinal structure and function resulting in neural and vascular degeneration in the retina. Current research has primarily focused on delaying retinal disease with minimal success in preventing or reversing neuronal degeneration. In this review, we explore a relatively new field of research involving circular RNAs, whose potential roles as biomarkers and mediators of retinal disease pathogenesis have only just emerged. While knowledge of circular RNAs function is limited given its novelty, current evidence has highlighted their roles as modulators of microRNAs, regulators of gene transcription, and biomarkers of disease development and progression. Here, we summarize how circular RNAs may be implicated in the pathogenesis of common retinal diseases including diabetic retinopathy, glaucoma, proliferative vitreoretinopathy, and age-related macular degeneration. Further, we explore the potential of circular RNAs as novel biomarkers and therapeutic targets for the diagnosis and treatment of retinal diseases.

8.
Angiogenesis ; 24(2): 363-377, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33201372

RESUMO

NADPH oxidase 4 (Nox4) is a major isoform of NADPH oxidases playing an important role in many biological processes. Previously we have shown that Nox4 is highly expressed in retinal blood vessels and is upregulated in oxygen-induced retinopathy (OIR). However, the exact role of endothelial Nox4 in retinal angiogenesis remains elusive. Herein, using endothelial cell (EC)-specific Nox4 knockout (Nox4EC-KO) mice, we investigated the impact of endothelial Nox4 deletion on retinal vascular development and pathological angiogenesis during OIR. Our results show that deletion of Nox4 in ECs led to retarded retinal vasculature development with fewer, blunted-end tip cells and sparser, dysmorphic filopodia at vascular front, and reduced density of vascular network in superficial, deep, and intermediate layers in postnatal day 7 (P7), P12, and P17 retinas, respectively. In OIR, loss of endothelial Nox4 had no effect on hyperoxia-induced retinal vaso-obliteration at P9 but significantly reduced aberrant retinal neovascularization at P17 and decreased the deep layer capillary density at P25. Ex vivo study confirmed that lack of Nox4 in ECs impaired vascular sprouting. Mechanistically, loss of Nox4 significantly reduced expression of VEGF, p-VEGFR2, integrin αV, angiopoietin-2, and p-ERK1/2, attenuating EC migration and proliferation. Taken together, our results indicate that endothelial Nox4 is important for retinal vascular development and contributes to pathological angiogenesis, likely through regulation of VEGF/VEGFR2 and angiopoietin-2/integrin αV/ERK pathways. In addition, our study suggests that endothelial Nox4 appears to be essential for intraretinal revascularization after hypoxia. These findings call for caution on targeting endothelial Nox4 in ischemic/hypoxic retinal diseases.


Assuntos
Células Endoteliais/enzimologia , Endotélio Vascular/enzimologia , Deleção de Genes , NADPH Oxidase 4/metabolismo , Neovascularização Fisiológica , Neovascularização Retiniana/enzimologia , Vasos Retinianos/crescimento & desenvolvimento , Animais , Camundongos , Camundongos Knockout , NADPH Oxidase 4/genética , Neovascularização Retiniana/genética
9.
J Clin Med ; 8(6)2019 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-31242599

RESUMO

Retinal neuronal injury and degeneration is one of the primary manifestations of diabetic retinopathy, a leading cause of vision loss in working age adults. In pathological conditions, including diabetes and some physiological conditions such as aging, protein homeostasis can become disrupted, leading to endoplasmic reticulum (ER) stress. Severe or unmitigated ER stress can lead to cell death, which in retinal neurons results in irreversible loss of visual function. X-box binding protein 1 (XBP1) is a major transcription factor responsible for the adaptive unfolded protein response (UPR) to maintain protein homeostasis in cells undergoing ER stress. The purpose of this study is to determine the role of XBP1-mediated UPR in retinal neuronal survival and function in a mouse model of type 1 diabetes. Using a conditional retina-specific XBP1 knockout mouse line, we demonstrate that depletion of XBP1 in retinal neurons results in early onset retinal function decline, loss of retinal ganglion cells and photoreceptors, disrupted photoreceptor ribbon synapses, and Müller cell activation after induction of diabetes. Our findings suggest an important role of XBP1-mediated adaptive UPR in retinal neuronal survival and function in diabetes.

10.
Diabetologia ; 62(3): 531-543, 2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-30612139

RESUMO

AIMS/HYPOTHESIS: Müller glia (MG) are major sources of retinal cytokines, and their activation is closely linked to retinal inflammation and vascular leakage in diabetic retinopathy. Previously, we demonstrated that X-box binding protein 1 (XBP1), a transcription factor activated by endoplasmic reticulum (ER) stress in diabetic retinopathy, is involved in regulation of inflammation in retinal endothelial cells. Now, we have explored the role of XBP1 and ER stress in the regulation of MG-derived proinflammatory factors, and their influence on vascular permeability in diabetic retinopathy. METHODS: MG-specific conditional Xbp1 knockout (Xbp1Müller-/-) mice were generated by crossing Xbp1 flox/flox mice with Müller-Cre transgenic mice. Diabetes was modelled by induction with streptozotocin, and retinal vascular permeability was measured with FITC-conjugated dextran 2 months after induction. Primary Müller cells were isolated from Xbp1Müller-/- and Xbp1Müller+/+ mice and exposed to hypoxia and high levels of glucose. Levels of ER-stress and inflammatory factors were examined by real-time PCR, western blotting or immunohistochemistry. RESULTS: Xbp1Müller-/- mice exhibited normal retinal development and retinal function and expressed similar levels of ER-stress and inflammatory genes to Xbp1Müller+/+ littermates. In diabetes-inducing conditions, compared with Xbp1Müller+/+ mice, Xbp1Müller-/- mice had higher mRNA levels of retinal Vegf (also known as Vegfa) and Tnf-α (also known as Tnf) and ER-stress marker genes Grp78 (also known as Hspa5), Atf4, Chop (also known as Ddit3) and Atf6 and higher protein levels of vascular endothelial growth factor (VEGF), TNF-α, phospho-c-Jun N-terminal kinase (JNK), 78 kDa glucose-regulated protein (GRP78), phospho-eukaryotic translation initiation factor (eIF)2α and activating transcription factor (ATF)6. Retinal vascular permeability was significantly higher in diabetic Xbp1Müller-/- mice than in diabetic Xbp1Müller+/+ mice (p < 0.01). Results obtained in vitro with primary Müller cells isolated from Xbp1Müller-/- mice confirmed higher expression levels of inflammatory and ER-stress markers (but not GRP78) than in cells from Xbp1Müller+/+ mice. Moreover, XBP1-deficient Müller cells were more susceptible to high-glucose- or hypoxia-induced ER stress and inflammation than cells from Xbp1Müller+/+ mice. Inhibition of ER stress with chemical chaperones suppressed hypoxia-induced VEGF and TNF-α production in XBP1-deficient Müller cells. CONCLUSIONS/INTERPRETATION: Our results have revealed an important role of XBP1 and ER stress in MG-driven retinal inflammation, and suggest that targeting ER stress may represent a promising approach for the prevention and treatment of diabetic retinopathy.


Assuntos
Diabetes Mellitus Experimental/metabolismo , Retinopatia Diabética/metabolismo , Células Ependimogliais/metabolismo , Inflamação/metabolismo , Retina/metabolismo , Proteína 1 de Ligação a X-Box/metabolismo , Animais , Permeabilidade Capilar/fisiologia , Diabetes Mellitus Experimental/patologia , Retinopatia Diabética/patologia , Chaperona BiP do Retículo Endoplasmático , Estresse do Retículo Endoplasmático/fisiologia , Células Ependimogliais/patologia , Inflamação/patologia , Camundongos , Retina/patologia
11.
Neural Regen Res ; 13(11): 1861-1870, 2018 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-30233053

RESUMO

The retina is one of the most energy demanding tissues in the body. Like most neurons in the central nervous system, retinal neurons consume high amounts of adenosine-5'-triphosphate (ATP) to generate visual signal and transmit the information to the brain. Disruptions in retinal metabolism can cause neuronal dysfunction and degeneration resulting in severe visual impairment and even blindness. The homeostasis of retinal metabolism is tightly controlled by multiple signaling pathways, such as the unfolded protein response (UPR), and the close interactions between retinal neurons and other retinal cell types including vascular cells and Müller glia. The UPR is a highly conserved adaptive cellular response and can be triggered by many physiological stressors and pathophysiological conditions. Activation of the UPR leads to changes in glycolytic rate, ATP production, de novo serine synthesis, and the hexosamine biosynthetic pathway, which are considered critical components of Müller glia metabolism and provide metabolic support to surrounding neurons. When these pathways are disrupted, neurodegeneration occurs rapidly. In this review, we summarize recent advance in studies of the UPR in Müller glia and highlight the potential role of the UPR in retinal degeneration through regulation of Müller glia metabolism.

12.
Adv Exp Med Biol ; 1074: 421-427, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29721972

RESUMO

The molecular chaperone endoplasmic reticulum protein 29 (ERp29) plays a critical role in protein folding, trafficking, and secretion. Though ubiquitously expressed, ERp29 is upregulated in response to ER stress and is found at higher levels in certain cell types such as secretory epithelial cells and neurons. As an ER resident protein, ERp29 shares many structural and functional similarities with protein disulfide isomerases, but is not regarded as part of this family due to several key differences. The broad expression and myriad roles of ERp29 coupled with its upregulation via the unfolded protein response (UPR) upon ER stress have implicated ERp29 in a range of cellular processes and diseases. We summarize the diverse activities of ERp29 in protein trafficking, cell survival and apoptosis, and ER homeostasis and highlight a potential role of ERp29 in neuroprotection in retinal and neurodegenerative diseases.


Assuntos
Proteínas de Choque Térmico/fisiologia , Doenças Neurodegenerativas/metabolismo , Degeneração Retiniana/metabolismo , Apoptose , Reparo do DNA , Estresse do Retículo Endoplasmático , Células Epiteliais/metabolismo , Proteínas do Olho/fisiologia , Junções Comunicantes/fisiologia , Homeostase , Humanos , Terapia de Alvo Molecular , Doenças Neurodegenerativas/prevenção & controle , Doenças Neurodegenerativas/terapia , Neurônios/metabolismo , Dobramento de Proteína , Transporte Proteico , Degeneração Retiniana/prevenção & controle , Degeneração Retiniana/terapia , Resposta a Proteínas não Dobradas
13.
Mol Neurodegener ; 13(1): 16, 2018 04 04.
Artigo em Inglês | MEDLINE | ID: mdl-29615095

RESUMO

BACKGROUND: Aging is the strongest risk factor for neurodegenerative diseases and extended age results in neuronal degeneration and functional decline in the visual system. Among many contributing factors to age-related deterioration of neurons is an insufficient activation of the Unfolded Protein Response (UPR) in the endoplasmic reticulum (ER) in response to cellular stress. X-box binding protein 1 (XBP1) is a major component of the UPR and is essential for maintaining protein homeostasis and reducing cellular stresses. Herein, we investigate the role of XBP1 in maintaining morphological and functional integrity in retinal neurons during adulthood and the early stages of aging. METHODS: The basal and induced levels of XBP1 activation in the retina were measured in young adult and aged mice. Conditional knockout (cKO) of XBP1 in retinal neurons was achieved by crossing XBP1 floxed mice with a retina specific Cre-recombinase line (Chx10-Cre). Retinal morphology, neuronal populations including photoreceptors, bipolar cells, and retinal ganglion cells (RGCs), synaptic structure, and microglial activation were examined with immunohistochemistry and staining of retinal sections. Retinal function was evaluated with light-adapted (photopic) and dark adapted (scotopic) electroretinograms. Retinal mitochondrial function and metabolism was assessed by Seahorse XFe24 Extracellular Flux Analyzer. RESULTS: The retinas of aged wild type (WT) mice display a significantly reduced basal level of Xbp1s and compromised activation of ER stress response. In XBP1 cKO mice, significant structural degeneration of the retina, evidenced by thinning of retinal layers and a loss of RGCs, and functional defects indicated by diminished photopic and scotopic ERG b-waves are observed at the age of 12-14 months. Furthermore, discontinuous and disorganized synaptic laminae, colocalized with activated microglia, in the inner plexiform layer is found in the XBP1 cKO retinas. In addition, cKO mice demonstrate a significant increase in ectopic synapses between bipolar cells and photoreceptors, which is strikingly similar to WT mice at 20-24 months of age. These changes are associated with defective retinal glycolysis while mitochondrial respiratory function appears normal in the cKO retina. CONCLUSIONS: XBP1 cKO mice at 12-14 months of age show significant structural, functional, and metabolic deficits that closely resemble WT mice twice that age. Our findings suggest that the absence of XBP1, a critical component of the UPR, accelerates age-related retinal neurodegeneration.


Assuntos
Envelhecimento/metabolismo , Degeneração Neural/metabolismo , Retina/metabolismo , Resposta a Proteínas não Dobradas/fisiologia , Proteína 1 de Ligação a X-Box/metabolismo , Envelhecimento/patologia , Animais , Camundongos , Camundongos Knockout , Degeneração Neural/patologia , Retina/patologia
14.
Cell Death Dis ; 9(5): 467, 2018 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-29700294

RESUMO

Persistent vascular injury and degeneration in diabetes are attributed in part to defective reparatory function of angiogenic cells. Our recent work implicates endoplasmic reticulum (ER) stress in high-glucose-induced bone marrow (BM) progenitor dysfunction. Herein, we investigated the in vivo role of ER stress in angiogenic abnormalities of streptozotocin-induced diabetic mice. Our data demonstrate that ER stress markers and inflammatory gene expression in BM mononuclear cells and hematopoietic progenitor cells increase dynamically with disease progression. Increased CHOP and cleaved caspase- 3 levels were observed in BM--derived early outgrowth cells (EOCs) after 3 months of diabetes. Inhibition of ER stress by ex vivo or in vivo chemical chaperone treatment significantly improved the generation and migration of diabetic EOCs while reducing apoptosis of these cells. Chemical chaperone treatment also increased the number of circulating angiogenic cells in peripheral blood, alleviated BM pathology, and enhanced retinal vascular repair following ischemia/reperfusion in diabetic mice. Mechanistically, knockdown of CHOP alleviated high-glucose-induced EOC dysfunction and mitigated apoptosis, suggesting a pivotal role of CHOP in mediating ER stress-associated angiogenic cell injury in diabetes. Together, our study suggests that targeting ER signaling may provide a promising and novel approach to enhancing angiogenic function in diabetes.


Assuntos
Apoptose , Diabetes Mellitus Experimental/metabolismo , Diabetes Mellitus Tipo 1/metabolismo , Estresse do Retículo Endoplasmático , Neovascularização Fisiológica , Células-Tronco/metabolismo , Animais , Caspase 3/metabolismo , Diabetes Mellitus Experimental/patologia , Diabetes Mellitus Tipo 1/patologia , Masculino , Camundongos , Células-Tronco/patologia , Fator de Transcrição CHOP/metabolismo
15.
Front Genet ; 9: 658, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30619478

RESUMO

Normal function of the retinal pigment epithelium (RPE) is essential for maintaining the structural integrity of retinal photoreceptors and the visual process. Sustained oxidative damage of the RPE due to aging and other risk factors contributes to the development of age-related macular degeneration (AMD). The transcription factor NF-E2-related factor 2 (Nrf2) is a central regulator of cellular antioxidant and detoxification responses. Enhancing Nrf2 function protects RPE cells from oxidation-related apoptosis and cell death. Previously, we demonstrated that Nrf2 activation can be induced by endoplasmic reticulum (ER) stress; however, the mechanisms are not fully understood. In the present study, we examined the role of X box-binding protein 1 (XBP1), an ER stress-inducible transcription factor, in regulation of Nrf2 in the RPE. We found that RPE-specific XBP1 conditional knockout (cKO) mice exhibit a significant reduction in Nrf2 mRNA and protein levels, along with decreased expression of major Nrf2 target genes, in the RPE/choroid complex. Using primary RPE cells isolated from XBP1 cKO mice and human ARPE-19 cell line, we confirmed that loss of XBP1 gene or pharmacological inhibition of XBP1 splicing drastically reduces Nrf2 levels in the RPE. Conversely, overexpression of spliced XBP1 results in a modest but significant increase in cytosolic and nuclear Nrf2 protein levels without affecting the transcription of Nrf2 gene. Moreover, induction of ER stress by tunicamycin and thapsigargin markedly increases Nrf2 expression, which is abolished in cells pretreated with XBP1 splicing inhibitors 4µ8C and quinotrierixin. Mechanistic studies indicate that quinotrierixin reduces Nrf2 expression likely through inhibition of protein translation. Finally, we demonstrate that overexpression of Nrf2 protected RPE cells against oxidative injury but appeared to be insufficient to rescue from XBP1 deficiency-induced cell death. Taken together, our results indicate that XBP1 modulates Nrf2 activity in RPE cells and that XBP1 deficiency contributes to oxidative injury of the RPE.

16.
Sci Rep ; 7(1): 2062, 2017 05 18.
Artigo em Inglês | MEDLINE | ID: mdl-28522876

RESUMO

The mitochondria-associated ER membrane (MAM) plays a critical role in cellular energetics and calcium homeostasis; however, how MAM is affected under diabetic condition remains elusive. This study presented a comprehensive proteome profiling of isolated brain MAM from long-term type 2 diabetic mice vs. non-diabetic controls. MAM protein was extracted efficiently by a surfactant-aided precipitation/on-pellet digestion (SOD) method, and MAM proteome was quantified by an ion-current-based MS1 method combined with nanoLC-MS/MS. A total of 1,313 non-redundant proteins of MAM were identified, among which 144 proteins were found significantly altered by diabetes. In-depth IPA analysis identified multiple disease-relevant signaling pathways associated with the MAM proteome changes in diabetes, most significantly the unfolded protein response (UPR), p53, hypoxia-related transcription factors, and methyl CpG binding protein 2. Using immunofluorescence labeling we confirmed the activation of three UPR branches and increased ERp29 and calreticulin in diabetic retinas. Moreover, we found GRP75, a key MAM tethering protein, was drastically reduced by long-term diabetes. In vitro, acute high glucose treatment reduces ER-mitochondrial contact in retinal endothelial cells. This study provides first insight into the significant alterations in MAM proteome associated with activation of the UPR in diabetes, which may serve as novel benchmarks for the future studies of diabetic complications.


Assuntos
Diabetes Mellitus Tipo 2/metabolismo , Retículo Endoplasmático/metabolismo , Membranas Mitocondriais/metabolismo , Proteoma , Proteômica , Animais , Biologia Computacional/métodos , Diabetes Mellitus Experimental , Modelos Animais de Doenças , Camundongos , Anotação de Sequência Molecular , Proteômica/métodos , Reprodutibilidade dos Testes , Transdução de Sinais
17.
Invest Ophthalmol Vis Sci ; 57(13): 5244-5252, 2016 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-27701635

RESUMO

PURPOSE: The retinal pigment epithelium (RPE) tight junctions play a pivotal role in maintaining the homeostatic environment of the neural retina. Herein, we investigated the role of X-box binding protein 1 (XBP1), an endoplasmic reticulum (ER) stress-responsive transcription factor, in regulation of RPE tight junctions. METHODS: Human RPE cell line (ARPE-19) and primary primate RPE cells were used for in vitro experiments and RPE-specific XBP1 knockout (KO) mice were used for in vivo study. Endoplasmic reticulum stress was induced by a sublethal dose of thapsigargin or tunicamycin. XBP1 activation was manipulated by IRE inhibitor 4µ8C, which suppresses XBP1 mRNA splicing. The integrity of tight junctions and the involvement of calcium-dependent RhoA/Rho kinase pathway were examined. RESULTS: Induction of ER stress by thapsigargin, but not tunicamycin, disrupted RPE tight junctions in ARPE-19 cells. Inhibition of XBP1 activation by 4µ8C resulted in a remarkable downregulation of tight junction proteins (ZO-1 and occludin) and defects in tight junction formation in the presence or absence of ER stress inducers. Overexpression of active XBP1 partially reversed 4µ8C-induced anomalies in tight junctions. Mechanistically, XBP1 inhibition resulted in increased intracellular Ca2+ concentration, upregulation of RhoA expression, redistribution of F-actin, and tight junction damage, which was attenuated by Rho kinase inhibitor Y27632. In vivo, deletion of XBP1 in the RPE resulted in defective RPE tight junctions accompanied by increased VEGF expression. CONCLUSIONS: Taken together, these results suggest a protective role of XBP1 in maintaining RPE tight junctions possibly through regulation of calcium-dependent RhoA/Rho kinase signaling and actin cytoskeletal reorganization.


Assuntos
Regulação da Expressão Gênica , RNA Mensageiro/genética , Degeneração Retiniana/genética , Epitélio Pigmentado da Retina/metabolismo , Proteína 1 de Ligação a X-Box/genética , Animais , Western Blotting , Sobrevivência Celular , Células Cultivadas , Modelos Animais de Doenças , Estresse do Retículo Endoplasmático , Humanos , Macaca mulatta , Camundongos , Camundongos Knockout , Reação em Cadeia da Polimerase em Tempo Real , Degeneração Retiniana/metabolismo , Degeneração Retiniana/patologia , Epitélio Pigmentado da Retina/patologia , Junções Íntimas/genética , Junções Íntimas/metabolismo , Proteína 1 de Ligação a X-Box/biossíntese
18.
Sci Rep ; 6: 25013, 2016 04 26.
Artigo em Inglês | MEDLINE | ID: mdl-27113095

RESUMO

The NLRP3 inflammasome activation is a key signaling event for activation and secretion of pro-inflammatory cytokines such as IL-1ß from macrophages. p58(IPK) is a molecular chaperone that regulates protein homeostasis through inhibiting eIF-2α kinases including double-stranded RNA-dependent protein kinase (PKR), which has been recently implicated in inflammasome activation. Herein we investigate the role of p58(IPK) in TLR4 signaling and inflammasome activation in macrophages. Primary bone marrow-derived macrophages (BMDM) was isolated from p58(IPK) knockout (KO) and wildtype (WT) mice and treated with lipopolysaccharide (LPS) and ATP to activate TLR4 signaling and stimulate inflammasome activation. Compared to WT macrophages, p58(IPK) deficient cells demonstrated significantly stronger activation of PKR, NF-κB, and JNK and higher expression of pro-inflammatory genes TNF-α and IL-1ß. Coincidently, p58(IPK) deletion intensified NLRP3-inflammasome activation indicated by enhanced caspase 1 cleavage and increased IL-1ß maturation and secretion. Pretreatment with specific PKR inhibitor or overexpression of p58(IPK) largely abolished the changes in inflammasome activation and IL-1ß secretion in p58(IPK) null macrophages. Furthermore, immunoprecipitation assay confirmed the binding of p58(IPK) with PKR, but not other TLR4 downstream signaling molecules. Collectively, these results suggest a novel and crucial role of p58(IPK) in regulation of inflammasome activation and IL-1ß secretion in macrophages.


Assuntos
Proteínas de Choque Térmico HSP40/genética , Interleucina-1beta/metabolismo , Macrófagos/metabolismo , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , eIF-2 Quinase/metabolismo , Trifosfato de Adenosina/farmacologia , Animais , Células Cultivadas , Técnicas de Inativação de Genes , Proteínas de Choque Térmico HSP40/metabolismo , Lipopolissacarídeos/farmacologia , Macrófagos/citologia , Camundongos , Ligação Proteica , Transdução de Sinais
19.
Invest Ophthalmol Vis Sci ; 56(11): 6196-207, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-26431474

RESUMO

PURPOSE: Endoplasmic reticulum protein 29 (ERp29) is a novel chaperone that was recently found decreased in human retinas with AMD. Herein, we examined the effect of ERp29 on cigarette smoke-induced RPE apoptosis and tight junction disruption. METHODS: Cultured human RPE (HRPE) cells (ARPE-19) or mouse RPE eyecup explants were exposed to cigarette smoke extract (CSE) for short (up to 24 hours) or long (up to 3 weeks) periods. Expression of ERp29 was up- and downregulated by adenovirus and siRNA, respectively. Endoplasmic reticulum stress markers, apoptosis, and cell death, the expression and distribution of tight junction protein ZO-1, transepithelial electrical resistance (TEER), and F-actin expression were examined. RESULTS: Endoplasmic reticulum protein 29 was significantly increased by short-term exposure to CSE in ARPE-19 cells or eyecup explants but was reduced after 3-week exposure. Overexpression of ERp29 increased the levels of GRP78, p58(IPK), and Nrf-2, while reducing p-eIF2α and C/EBP homologous protein (CHOP), and protected RPE cells from CSE-induced apoptosis. In contrast, knockdown of ERp29 decreased the levels of p58(IPK) and Nrf2, but increased p-eIF2α and CHOP and exacerbated CSE-triggered cell death. In addition, overexpression of ERp29 attenuated CSE-induced reduction in ZO-1 and enhanced the RPE barrier function, as measured by TEER. Knockdown of ERp29 decreased the level of ZO-1 protein. These effects were associated with changes in the expression of cytoskeleton F-actin. CONCLUSIONS: Endoplasmic reticulum protein 29 attenuates CSE-induced ER stress and enhances cell viability and barrier integrity of RPE cells, and therefore may act as a protective mechanism for RPE survival and activity.


Assuntos
Apoptose/efeitos dos fármacos , Estresse do Retículo Endoplasmático/genética , Regulação da Expressão Gênica , Proteínas de Choque Térmico/genética , Epitélio Pigmentado da Retina/metabolismo , Fumar/efeitos adversos , Junções Íntimas/metabolismo , Western Blotting , Linhagem Celular , Sobrevivência Celular , Chaperona BiP do Retículo Endoplasmático , Estresse do Retículo Endoplasmático/efeitos dos fármacos , Proteínas de Choque Térmico/metabolismo , Humanos , Imuno-Histoquímica , RNA/genética , Epitélio Pigmentado da Retina/efeitos dos fármacos , Epitélio Pigmentado da Retina/patologia , Reação em Cadeia da Polimerase Via Transcriptase Reversa
20.
Diabetologia ; 58(9): 2181-90, 2015 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-26063198

RESUMO

AIMS/HYPOTHESIS: Bone marrow-derived circulating angiogenic cells (CACs) play an important role in vascular repair. In diabetes, compromised functioning of the CACs contributes to the development of diabetic retinopathy; however, the underlying mechanisms are poorly understood. We examined whether endoplasmic reticulum (ER) stress, which has recently been linked to endothelial injury, is involved in diabetic angiogenic dysfunction. METHODS: Flow cytometric analysis was used to quantify bone marrow-derived progenitors (Lin(-)/c-Kit(+)/Sca-1(+)/CD34(+)) and blood-derived CACs (Sca-1(+)/CD34(+)) in 15-month-old Lepr (db) (db/db) mice and in their littermate control (db/+) mice used as a model of type 2 diabetes. Markers of ER stress in diabetic (db/db) and non-diabetic (db/+) bone marrow-derived early outgrowth cells (EOCs) and retinal vascular density were measured. RESULTS: The numbers of bone-marrow progenitors and CACs were significantly reduced in db/db mice. Vascular density was markedly decreased in the retinas of db/db mice, and this was accompanied by vascular beading. Microglial activation was enhanced, as was the production of hypoxia inducible factor-1α (HIF-1α) and vascular endothelial growth factor (VEGF). The production of ER stress markers (glucose-regulated protein-78 [GRP-78], phosphorylated inositol-requiring enzyme-1α [p-IRE-1α], phosphorylated eukaryotic translation initiation factor-2α [p-eIF2α], activating transcription factor-4 [ATF4], C/EBP homologous protein [CHOP] and spliced X-box binding protein-1 [XBP1s]) was significantly increased in bone marrow-derived EOCs from db/db mice. In addition, mouse EOCs cultured in high-glucose conditions demonstrated higher levels of ER stress, reduced colony formation, impaired migration and increased apoptosis, all of which were largely prevented by the chemical chaperone 4-phenylbutyrate. CONCLUSIONS/INTERPRETATION: Taken together, our results indicate that diabetes increases ER stress in bone marrow angiogenic progenitor cells. Thus, targeting ER stress may offer a new approach to improving angiogenic progenitor cell function and promoting vascular repair in diabetes.


Assuntos
Células da Medula Óssea/citologia , Diabetes Mellitus Experimental/patologia , Diabetes Mellitus Tipo 2/patologia , Estresse do Retículo Endoplasmático , Células-Tronco/citologia , Animais , Apoptose , Glicemia/metabolismo , Movimento Celular , Separação Celular , Células Endoteliais/citologia , Citometria de Fluxo , Camundongos , Neovascularização Patológica , Fenilbutiratos/química , Vasos Retinianos/patologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...