Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Front Plant Sci ; 13: 1056935, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36578345

RESUMO

Introduction: Wheat sharp eyespot caused by Rhizoctonia cerealis is a serious pathogenic disease affecting plants. The effective strategy for controlling this disease is breeding resistant cultivar. However, to date, no wheat varieties are fully resistant to sharp eyespot, and only a few quantitative trait loci (QTLs) have been shown to be associated with sharp eyespot resistance. Methods: To understand the genetic basis of this disease, a genome-wide association study (GWAS) of sharp eyespot resistance in 262 varieties from all China wheat regions was conducted. Results: After cultivation for three years, only 6.5% of the varieties were resistant to sharp eyespot. Notably, the varieties from the middle and lower Yangtze River displayed higher sharp eyespot resistance than those from Huanghuai wheat zone. Only two varieties had the same resistance level to the control Shanhongmai. The results of GWAS showed that 5 single nucleotide polymorphism (SNP) loci were markedly related to sharp eyespot resistance in the three years repeatedly, and two QTLs, qSE-6A and qSE-7B, on chromosome 6A and 7B were identified. Based on the 'CG' haplotypes of significant SNPs, we found that the two QTLs exhibited additive effects on attenuating sharp eyespot resistance. Discussion: These results provide novel insights into the genetic basis of sharp eyespot resistance in China wheat varieties. The SNPs related to sharp eyespot resistance can be applied for marker-assisted selection in plant breeding.

2.
Plants (Basel) ; 11(23)2022 Dec 04.
Artigo em Inglês | MEDLINE | ID: mdl-36501411

RESUMO

Weak-gluten wheat is the main raw material for crisp and soft foods such as cookies, cakes, and steamed breads in China. However, it remains challenging to find an appropriate fertilization regime to balance the yield and quality of wheat for special uses (such as cookie making). Here, four nitrogen (N) fertilizer treatments were compared in terms of effects on the yield-, grain-, flour-, and dough-related traits and cookie quality of nine weak-gluten wheat varieties. Compared with other treatments, the treatment M (which had 180 kg ha-1 N fertilizers with basal fertilizer:tillering fertilizer:jointing fertilizer = 5:1:4) was a superior fertilization strategy as it could ensure a higher yield (4.46 kg block-1) and proper traits related to cookie quality. Moreover, environmental conditions and wheat genotypes exhibited significant effects on many quality-related traits. The quality of Chinese crisp biscuits showed a significant association with unit weight, redness, and solvent retention capacity in lactic acid solution, while that of American cookies was influenced by thousand-grain weight, hardness, rate of yield flour, and formation time as indicated by the Mantel test. Additional Pearson correlation analysis demonstrated that thousand-grain weight, hardness, and rate of yield flour can affect the quality of American cookies. Our findings demonstrate that it is necessary to comprehensively consider local conditions, variety selection, and optimal fertilization to achieve high-quality weak-gluten wheat for cookie making.

3.
BMC Plant Biol ; 20(1): 29, 2020 Jan 20.
Artigo em Inglês | MEDLINE | ID: mdl-31959107

RESUMO

BACKGROUND: Fusarium head blight (FHB), primarily caused by Fusarium graminearum, is a major threat to wheat production and food security worldwide. Breeding stably and durably resistant cultivars is the most effective approach for managing and controlling the disease. The success of FHB resistance breeding relies on identification of an effective resistant germplasm. We conducted a genome-wide association study (GWAS) using the high-density wheat 90 K single nucleotide polymorphism (SNP) assays to better understand the genetic basis of FHB resistance in natural population and identify associated molecular markers. RESULTS: The resistance to FHB fungal spread along the rachis (Type II resistance) was evaluated on 171 wheat cultivars in the 2016-2017 (abbr. as 2017) and 2017-2018 (abbr. as 2018) growing seasons. Using Illumina Infinum iSelect 90 K SNP genotyping data, a genome-wide association study (GWAS) identified 26 loci (88 marker-trait associations), which explained 6.65-14.18% of the phenotypic variances. The associated loci distributed across all chromosomes except 2D, 6A, 6D and 7D, with those on chromosomes 1B, 4A, 5D and 7A being detected in both years. New loci for Type II resistance were found on syntenic genomic regions of chromsome 4AL (QFhb-4AL, 621.85-622.24 Mb) and chromosome 5DL (QFhb-5DL, 546.09-547.27 Mb) which showed high collinearity in gene content and order. SNP markers wsnp_JD_c4438_5568170 and wsnp_CAP11_c209_198467 of 5D, reported previously linked to a soil-borne wheat mosaic virus (SBWMV) resistance gene, were also associated with FHB resistance in this study. CONCLUSION: The syntenic FHB resistant loci and associated SNP markers identified in this study are valuable for FHB resistance breeding via marker-assisted selection.


Assuntos
Mapeamento Cromossômico , Cromossomos de Plantas/genética , Resistência à Doença , Fusarium/fisiologia , Doenças das Plantas/genética , Triticum/genética , Estudo de Associação Genômica Ampla , Doenças das Plantas/microbiologia , Sintenia , Triticum/microbiologia
4.
Guang Pu Xue Yu Guang Pu Fen Xi ; 32(5): 1287-91, 2012 May.
Artigo em Chinês | MEDLINE | ID: mdl-22827074

RESUMO

In order to further assess the feasibility of monitoring the chlorophyll fluorescence parameter Fv/Fm in compact corn by hyperspectral remote sensing data, in the present study, hyperspectral vegetation indices from in-situ remote sensing measurements were utilized to monitor the chlorophyll fluorescence parameter Fv/Fm measured in the compact corn experiment. The relationships were analyzed between hyperspectral vegetation indices and Fv/Fm, and the monitoring models were established for Fv/Fm in the whole growth stages of compact corn. The results indicated that Fv/Fm was significantly correlated to the hyperspectral vegetation indices. Among them, structure-sensitive pigment index (SIPI) was the most sensitive remote sensing variable for monitoring Fv/Fm with correlation coefficient (r) of 0.88. The monitoring model of Fv/Fm was established on the base of SIPI, and the determination coefficients (r2) and the root mean square errors (RMSE) were 0.8126 and 0.082 respectively. The overall results suggest that hyperspectral vegetation indices can be potential indicators to monitor Fv/Fm during growth stages of compact corn.


Assuntos
Clorofila/análise , Fluorescência , Zea mays , Monitoramento Ambiental , Modelos Teóricos , Espectrometria de Fluorescência
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...