Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Nanosci Nanotechnol ; 10(10): 6567-74, 2010 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-21137763

RESUMO

Biological synthesis of gold and silver nanoparticles was carried out using the bacteria Bacillus subtilis. The reduction processes of chloroaurate and silver ions by B. subtilis were found to be different. Gold nanoparticles were synthesized both intra- and extracellularly, while silver nanoparticles were exclusively formed extracellularly. The gold nanoparticles were formed after 1 day of addition of chloroaurate ions, while the silver nanoparticles were formed after 7 days. The nanoparticles were characterized by X-ray diffraction, UV-vis spectra and transmission electron spectroscopy. X-ray diffraction revealed the formation of face-centered cubic (fcc) crystalline gold nanoparticles in the supernatant, broth solution and bacterial pellet. Silver nanoparticles also exhibited diffraction peaks corresponding to fcc metallic silver. UV-vis spectra showed surface plasmon vibrations for gold and silver nanoparticles centered at 530 and 456 nm, respectively. TEM micrographs depicted the formation of gold nanoparticles intra- and extracellularly, which had an average size of 7.6 +/- 1.8 and 7.3 +/- 2.3 nm, respectively, while silver nanoparticles were exclusively formed extracellularly, with an average size of 6.1 +/- 1.6 nm. The bacterial proteins were analyzed by sodium dodecyl sulfonate-polyacrylamide electrophoresis (SDS-PAGE) before and after the addition of metal ion solutions. We believe that proteins of a molecular weight between 25 and 66 kDa could be responsible for chloroaurate ions reduction, while the formation of silver nanoparticles can be attributed to proteins of a molecular weight between 66 and 116 kDa. We also believe that the nanoparticles were stabilized by the surface-active molecules i.e., surfactin or other biomolecules released into the solution by B. subtilis.


Assuntos
Bacillus subtilis/metabolismo , Reatores Biológicos/microbiologia , Ouro/química , Nanopartículas Metálicas/química , Prata/química , Cloretos/metabolismo , Eletroforese em Gel de Poliacrilamida , Ouro/metabolismo , Compostos de Ouro/metabolismo , Microscopia Eletrônica de Transmissão , Peso Molecular , Tamanho da Partícula , Prata/metabolismo , Espectrofotometria Ultravioleta , Difração de Raios X
2.
J Nanosci Nanotechnol ; 9(11): 6693-9, 2009 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-19908586

RESUMO

Anionic biosurfactant surfactin-mediated gold nanoparticles were synthesized for the first time in this study. Differing proton concentrations is believed to cause structural changes in the lipopeptide surfactin used to stabilize the gold nanoparticles in aqueous solution, the effects of which on the morphology of the nanoparticles were investigated. Synthesis of gold nanoparticles by borohydrate reduction was performed at three pH levels (pH 5, 7 and 9) and two different temperatures, and the nanoparticles were characterized by UV-visible spectroscopy, X-ray diffraction and transmission electron microscopy. The UV-vis spectra showed a blue shift with increasing pH from 5 to 9 (from 528 to 566 nm) at both 4 degrees C and room temperature. The nanoparticles synthesized at pH 7 and 9 remained stable for 2 months, while aggregates were observed at pH 5 within 24 h. TEM micrographs revealed that the mean particle size was about 13.11, 8.16 and 4.70 nm at pH 5, 9 and 7, respectively, at 4 degrees C. The nanoparticles formed at pH 7 were uniform in shape and size, and polydispersed and anisotropic at pH 5 and 9. The nanoparticles synthesized at room temperature were monodispersed and were more uniform as compared with those formed at 4 degrees C. This report describes the use of a renewable and environmentally green and biodegradable surfactant as a template and stabilizing agent in the synthesis of gold nanoparticles.


Assuntos
Bacillus subtilis/metabolismo , Cristalização/métodos , Ouro/química , Química Verde/métodos , Nanoestruturas/química , Nanoestruturas/ultraestrutura , Nanotecnologia/métodos , Tensoativos/química , Substâncias Macromoleculares/química , Teste de Materiais , Conformação Molecular , Tamanho da Partícula , Propriedades de Superfície
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...