Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 361
Filtrar
1.
Artigo em Inglês | MEDLINE | ID: mdl-38837151

RESUMO

Aims: Asthenozoospermia is the most common factor of male infertility, mainly caused by multiple morphological abnormalities of the sperm flagella (MMAF) and primary ciliary dyskinesia (PCD). Previous studies have shown that genetic factors may contribute to MMAF and PCD. The study aimed to identify novel potentially pathogenic gene mutations in a Chinese infertile man with MMAF and PCD-like phenotypes. Methods: A Chinese infertile man with MMAF and PCD was enrolled in this study. Whole exome sequencing and Sanger sequencing were performed to identify potential causative genes and mutations. Results: A novel homozygous missense mutation (c.1450G>A; p.E484K) of CCDC40 was finally identified and Sanger sequencing confirmed that the patient carried the homozygous mutation, which was inherited from his parents. We reported the first homozygous missense CCDC40 mutation in infertile men with MMAF but had other milder PCD symptoms. Conclusion: Our findings not only broaden the disease-causing mutation spectrum of CCDC40 but also provide new insight into the correlation between CCDC40 mutations and MMAF.

2.
Heliyon ; 10(11): e32255, 2024 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-38882265

RESUMO

Background: Shear wave elastography (SWE) is a novel imaging technique that provides quantitative assessments of tissue stiffness. This non-invasive method offers real-time, quantitative measurements and has been widely applied to various tissues, providing valuable diagnostic insights. Purpose: This study aimed to investigate the feasibility of using SWE to evaluate the stiffness of the lens in patients with age-related cataracts. Materials and methods: A comparative analysis involving 92 patients diagnosed with age-related cataracts and 39 healthy controls was conducted. Lens stiffness was quantified using SWE measurements. The lens nucleus of all participants was graded based on the Lens Opacities Classification System II (LOCS II). Correlations between the stiffness of the lens and age were also analyzed. Results: The study indicates that both the stiffness of the lens and the lens nucleus were significantly higher in patients with age-related cataracts compared to healthy controls (P < 0.001). In patients with age-related cataracts, although lens nucleus stiffness variations across different grades of cataract severity were not statistically significant, all grades displayed increased stiffness relative to healthy controls. Additionally, a significant positive correlation between lens stiffness and age was observed in all participants (P < 0.001). Conclusion: SWE appears to be a promising imaging technique for quantitatively assessing the mechanical characteristics of the lens in patients with age-related cataracts.

3.
BMC Womens Health ; 24(1): 326, 2024 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-38840118

RESUMO

BACKGROUND: The oil-soluble contrast medium used in hysterosalpingography has been shown to have a fertility-enhancing effect, but the underlying mechanism is unclear, especially regarding the role of window of implantation (WOI). This study aimed to assess the endometrial immunological impact of the WOI before and after bathing with the oil-soluble contrast medium in women with recurrent implantation failure (RIF). METHODS: This descriptive study involved two medical centers between December 18, 2019, and December 30, 2020. We included infertile women who underwent three or more transfer cycles, cumulative transplantation of at least four high-quality cleavage-stage embryos or three high-quality blastocysts without clinical pregnancy, and high-quality frozen embryos that were still available for implantation. Patients received 5 ml of ethiodized poppyseed oil bathing, endometrial biopsy around bathing, and frozen-thawed embryo transfer (FET) within four menstrual cycles after bathing. Patients were excluded if failure to complete anyone. Data on the baseline characteristics and clinical data of the FET cycles were collected, and endometrial biopsy specimens were collected in the luteal phase before and after bathing and subjected to immunohistochemistry. The number of CD56 and CD138 positive cells and H-score of expression of ανß-3 and HOXA10 in endometrium were collected. RESULTS: Thirty-four patients were initially enrolled in the study; ultimately, twelve patients with a median age of 32.5 years (range 27-40 years) completed the research. The median number of embryo transfer cycles was three (range 3-8). A total of 4 of 12 women (33.33%) were diagnosed with chronic endometritis before oil-soluble contrast bathing. After bathing, the median numbers of CD138-positive cells in endometrium decreased from 0.75 (range 0-13.5) to 0.65 (range 0-6), P = 0.035; additionally, the H-score of expression of ανß-3 in endometrium increased from 148.50 ± 31.63 to 175.58 ± 31.83, P < 0.001. The thickness of the endometrium also significantly increased (8.90 ± 1.45 mm vs.10.11 ± 1.98 mm, P = 0.005). However, no consistent changes were found in the expression of CD56 and HOXA10 in the endometrium. Five patients experienced biochemical pregnancies (41.67%), four had clinical pregnancies (33.33%), and three achieved live births following oil-soluble contrast bathing (25%). CONCLUSIONS: These results suggest that oil-soluble contrast medium bathing decreased CD138-positive cells and upregulated expression of ανß-3 during WOI in patients with RIF. This histological impact of endometrium may result in enhanced fertility during FET cycles. Investigating the ability of intrauterine bathing with lower-dosage oil-soluble contrast to improve pregnancy in the RIF population is warranted.


Assuntos
Meios de Contraste , Implantação do Embrião , Transferência Embrionária , Endométrio , Infertilidade Feminina , Humanos , Feminino , Adulto , Infertilidade Feminina/terapia , Transferência Embrionária/métodos , Gravidez , Endometrite/prevenção & controle , Histerossalpingografia/métodos , Óleos , Banhos/métodos
4.
J Cell Biochem ; 2024 Jun 11.
Artigo em Inglês | MEDLINE | ID: mdl-38860522

RESUMO

The importance of protein kinase B (AKT) in tumorigenesis and development is well established, but its potential regulation of metabolic reprogramming via phosphorylation of the hexokinase (HK) isozymes remains unclear. There are two HK family members (HK1/2) and three AKT family members (AKT1/2/3), with varied distribution of AKTs exhibiting distinct functions in different tissues and cell types. Although AKT is known to phosphorylate HK2 at threonine 473, AKT-mediated phosphorylation of HK1 has not been reported. We examined direct binding and phosphorylation of HK1/2 by AKT1 and identified the phosphorylation modification sites using coimmunoprecipitation, glutathione pull-down, western blotting, and in vitro kinase assays. Regulation of HK activity through phosphorylation by AKT1 was also examined. Uptake of 2-[1,2-3H]-deoxyglucose and production of lactate were investigated to determine whether AKT1 regulates glucose metabolism by phosphorylating HK1/2. Functional assays, immunohistochemistry, and tumor experiments in mice were performed to investigate whether AKT1-mediated regulation of tumor development is dependent on its kinase activity and/or the involvement of HK1/2. AKT interacted with and phosphorylated HK1 and HK2. Serine phosphorylation significantly increased AKT kinase activity, thereby enhancing glycolysis. Mechanistically, the phosphorylation of HK1 at serine 178 (S178) by AKT significantly decreased the Km and enhanced the Vmax by interfering with the formation of HK1 dimers. Mutations in the AKT phosphorylation sites of HK1 or HK2 significantly abrogated the stimulatory characteristics of AKT on glycolysis, tumorigenesis, and cell migration, invasion, proliferation, and metastasis. HK1-S178 phosphorylation levels were significantly correlated with the occurrence and metastasis of different types of clinical tumors. We conclude that AKT not only regulates tumor glucose metabolism by directly phosphorylating HK1 and HK2, but also plays important roles in tumor progression, proliferation, and migration.

5.
Small ; : e2402615, 2024 Jun 03.
Artigo em Inglês | MEDLINE | ID: mdl-38830338

RESUMO

The rational design of highly active and durable non-noble electrocatalysts for hydrogen evolution reaction (HER) is significantly important but technically challenging. Herein, a phosphor and cobalt dual doped copper-nickel alloy (P, Co-CuNi) electrocatalyst with high-efficient HER performance is prepared by one-step electrodeposition method and reported for the first time. As a result, P, Co-CuNi only requires an ultralow overpotential of 56 mV to drive the current density of 10 mA cm-2, with remarkable stability for over 360 h, surpassing most previously reported transition metal-based materials. It is discovered that the P doping can simultaneously increase the electrical conductivity and enhance the corrosion resistance, while the introduction of Co can precisely modulate the sub-nanosheets morphology to expose more accessible active sites. Moreover, XPS, UPS, and DFT calculations reveal that the synergistic effect of different dopants can achieve the most optimal electronic structure around Cu and Ni, causing a down-shifted d-band center, which reduces the hydrogen desorption free energy of the rate-determining step (H2O + e- + H* → H2 + OH-) and consequently enhances the intrinsic activity. This work provides a new cognition toward the development of excellent activity and stability HER electrocatalysts and spurs future study for other NiCu-based alloy materials.

6.
Sci Rep ; 14(1): 11012, 2024 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-38745104

RESUMO

Considering the influence of thermal stress and material property variations, this study employs the Navier-Stokes equations and Fourier heat conduction law to establish a semi-implicit time-domain numerical analysis method for hypersonic aerothermal-structural coupling. Study the temporal variation pattern of different regions of the composite material wing under aerodynamic heating. Using the obtained transient temperature field of the wing, the thermal modal of the wing at different time points is calculated using the finite element method. Additionally, it conducts an analysis and discussion on the factors influencing the thermal modal. Composites can be effectively utilized as thermal protection materials for aircraft. During the aerodynamic heating process, the leading edge temperature reaches thermal equilibrium first, followed by the trailing edge, and the belly plate experiences a slower thermal response. Temperature rise significantly affects higher-order modes, with the change in material properties during the early stages of heating being the dominant factor. This leads to a faster decrease in natural frequency. As heat conduction progresses, the influencing factors of thermal stresses gradually increase, and the natural frequency decreases slowly or even rises.

7.
Dalton Trans ; 53(21): 9207-9215, 2024 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-38743052

RESUMO

To develop hydrogen energy production and address the issues of global warming, inexpensive, effective, and long-lasting transition metal-based electrocatalysts for the synthesis of hydrogen are crucial. Herein, a porous electrocatalyst NiMo/Ni/NF was successfully constructed by a two-step electrodeposition process, and was used in the hydrogen evolution reaction (HER) of electrocatalytic water decomposition. NiMo nanoparticles were coated on porous Ni/NF grown on nickel foam (NF), leading to a resilient porous structure with enhanced conductivity for efficient charge transfer, as well as distinctive three-dimensional channels for quick electrolyte diffusion and gas release. Notably, the low overpotential (42 mV) and fast kinetics (Tafel slope of 44 mV dec-1) at a current density of 10 mA cm-2 in 1.0 M KOH solution demonstrate the excellent HER activity of the electrode, which was superior to that of recently reported non-noble metal-based catalysts. Additionally, NiMo/Ni/NF showed extraordinary catalytic durability in stability tests at a current density of 10 mA cm-2 for 70 h. The porous structure catalyst and the electrodeposition-electrocatalysis technique examined in this study offer new approaches for the advancement of the electrocatalysis field because of these benefits.

8.
Dalton Trans ; 53(18): 7669-7676, 2024 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-38646797

RESUMO

A dinuclear Fe(II) spin crossover (SCO) complex with the formula [Fe2L5(NCS)4]·2DMF·2H2O (1) was synthesised from 1-naphthylimino-1,2,4-triazole (L). Complex 1 exhibits an incomplete thermally induced spin transition with a transition temperature T1/2 of 95 K and a thermally trapped metastable high-spin state at low temperatures. Furthermore, it undergoes a reversible light-induced spin crossover by alternate irradiation with 532 and 808 nm lasers.

9.
Cell Rep ; 43(4): 114088, 2024 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-38602878

RESUMO

Pancreatic ductal adenocarcinoma (PDAC) features an immunosuppressive tumor microenvironment (TME) that resists immunotherapy. Tumor-associated macrophages, abundant in the TME, modulate T cell responses. Bone marrow stromal antigen 2-positive (BST2+) macrophages increase in KrasG12D/+; Trp53R172H/+; Pdx1-Cre mouse models during PDAC progression. However, their role in PDAC remains elusive. Our findings reveal a negative correlation between BST2+ macrophage levels and PDAC patient prognosis. Moreover, an increased ratio of exhausted CD8+ T cells is observed in tumors with up-regulated BST2+ macrophages. Mechanistically, BST2+ macrophages secrete CXCL7 through the ERK pathway and bind with CXCR2 to activate the AKT/mTOR pathway, promoting CD8+ T cell exhaustion. The combined blockade of CXCL7 and programmed death-ligand 1 successfully decelerates tumor growth. Additionally, cGAS-STING pathway activation in macrophages induces interferon (IFN)α synthesis leading to BST2 overexpression in the PDAC TME. This study provides insights into IFNα-induced BST2+ macrophages driving an immune-suppressive TME through ERK-CXCL7 signaling to regulate CD8+ T cell exhaustion in PDAC.


Assuntos
Antígeno 2 do Estroma da Médula Óssea , Proteínas Ligadas por GPI , Interferon-alfa , Neoplasias Pancreáticas , Macrófagos Associados a Tumor , Animais , Feminino , Humanos , Camundongos , Antígenos CD/metabolismo , Carcinoma Ductal Pancreático/patologia , Carcinoma Ductal Pancreático/imunologia , Carcinoma Ductal Pancreático/metabolismo , Linfócitos T CD8-Positivos/imunologia , Linfócitos T CD8-Positivos/metabolismo , Linhagem Celular Tumoral , Proteínas Ligadas por GPI/metabolismo , Tolerância Imunológica , Interferon-alfa/metabolismo , Camundongos Endogâmicos C57BL , Neoplasias Pancreáticas/patologia , Neoplasias Pancreáticas/imunologia , Neoplasias Pancreáticas/metabolismo , Transdução de Sinais , Microambiente Tumoral/imunologia , Macrófagos Associados a Tumor/metabolismo , Macrófagos Associados a Tumor/imunologia , Macrófagos Associados a Tumor/patologia
10.
Proc Natl Acad Sci U S A ; 121(17): e2314353121, 2024 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-38635634

RESUMO

Auxin regulates plant growth and development through downstream signaling pathways, including the best-known SCFTIR1/AFB-Aux/IAA-ARF pathway and several other less characterized "noncanonical" pathways. Recently, one SCFTIR1/AFB-independent noncanonical pathway, mediated by Transmembrane Kinase 1 (TMK1), was discovered through the analyses of its functions in Arabidopsis apical hook development. Asymmetric accumulation of auxin on the concave side of the apical hook triggers DAR1-catalyzed release of the C-terminal of TMK1, which migrates into the nucleus, where it phosphorylates and stabilizes IAA32/34 to inhibit cell elongation, which is essential for full apical hook formation. However, the molecular factors mediating IAA32/34 degradation have not been identified. Here, we show that proteins in the CYTOKININ INDUCED ROOT WAVING 1 (CKRW1)/WAVY GROWTH 3 (WAV3) subfamily act as E3 ubiquitin ligases to target IAA32/34 for ubiquitination and degradation, which is inhibited by TMK1c-mediated phosphorylation. This antagonistic interaction between TMK1c and CKRW1/WAV3 subfamily E3 ubiquitin ligases regulates IAA32/34 levels to control differential cell elongation along opposite sides of the apical hook.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Proteínas F-Box , Ubiquitina-Proteína Ligases/genética , Ubiquitina-Proteína Ligases/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Ácidos Indolacéticos/metabolismo , Transdução de Sinais , Ubiquitinas/metabolismo , Regulação da Expressão Gênica de Plantas , Proteínas F-Box/genética , Proteínas F-Box/metabolismo
11.
Artigo em Inglês | MEDLINE | ID: mdl-38640056

RESUMO

Graph convolutional networks (GCNs) can quickly and accurately learn graph representations and have shown powerful performance in many graph learning domains. Despite their effectiveness, neighborhood awareness remains essential and challenging for GCNs. Existing methods usually perform neighborhood-aware steps only from the node or hop level, which leads to a lack of capability to learn the neighborhood information of nodes from both global and local perspectives. Moreover, most methods learn the nodes' neighborhood information from a single view, ignoring the importance of multiple views. To address the above issues, we propose a multi-view adaptive neighborhood-aware approach to learn graph representations efficiently. Specifically, we propose three random feature masking variants to perturb some neighbors' information to promote the robustness of graph convolution operators at node-level neighborhood awareness and exploit the attention mechanism to select important neighbors from the hop level adaptively. We also utilize the multi-channel technique and introduce a proposed multi-view loss to perceive neighborhood information from multiple perspectives. Extensive experiments show that our method can better obtain graph representation and has high accuracy.

12.
Acad Radiol ; 2024 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-38658211

RESUMO

RATIONALE AND OBJECTIVES: The aim of this study was to develop a deep learning radiomics nomogram (DLRN) based on B-mode ultrasound (BMUS) and color doppler flow imaging (CDFI) images for preoperative assessment of lymphovascular invasion (LVI) status in invasive breast cancer (IBC). MATERIALS AND METHODS: In this multicenter, retrospective study, 832 pathologically confirmed IBC patients were recruited from eight hospitals. The samples were divided into training, internal test, and external test sets. Deep learning and handcrafted radiomics features reflecting tumor phenotypes on BMUS and CDFI images were extracted. The BMUS score and CDFI score were calculated after radiomics feature selection. Subsequently, a DLRN was developed based on the scores and independent clinic-ultrasonic risk variables. The performance of the DLRN was evaluated for calibration, discrimination, and clinical usefulness. RESULTS: The DLRN predicted the LVI with accuracy, achieving an area under the receiver operating characteristic curve of 0.93 (95% CI 0.90-0.95), 0.91 (95% CI 0.87-0.95), and 0.91 (95% CI 0.86-0.94) in the training, internal test, and external test sets, respectively, with good calibration. The DLRN demonstrated superior performance compared to the clinical model and single scores across all three sets (p < 0.05). Decision curve analysis and clinical impact curve confirmed the clinical utility of the model. Furthermore, significant enhancements in net reclassification improvement (NRI) and integrated discrimination improvement (IDI) indicated that the two scores could serve as highly valuable biomarkers for assessing LVI. CONCLUSION: The DLRN exhibited strong predictive value for LVI in IBC, providing valuable information for individualized treatment decisions.

13.
Environ Toxicol ; 39(6): 3563-3577, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38477077

RESUMO

Lysine specific demethylase 1 (LSD1) is a histone demethylase that specifically catalyzes the demethylation of histone H3K4 (H3K4me1/2) and regulates gene expression. In addition, it can mediate the process of autophagy through its demethylase activity. Sestrin2 (SESN2) is a stress-induced protein and a positive regulator of autophagy. In NaAsO2-induced mouse fibrotic livers and activated hepatic stellate cells (HSCs), LSD1 expression is decreased, SESN2 expression is increased, and autophagy levels are also increased. Overexpression of LSD1 and silencing of SESN2 decreased the level of autophagy and attenuated the activation of HSCs induced by NaAsO2. LSD1 promoted SESN2 gene transcription by increasing H3K4me1/2 in the SESN2 promoter region. 3-methyladenine (3-MA) and chloroquine were used to inhibit autophagy of HSCs, and the degree of activation was also alleviated. Taken together, LSD1 positively regulates SESN2 by increasing H3K4me1/2 enrichment in the SESN2 promoter region, which in turn increases the level of autophagy and promotes the activation of HSCs. Our results may provide new evidence for the importance of LSD1 in the process of autophagy and activation of HSCs induced by arsenic poisoning. Increasing the expression and activity of LSD1 is expected to be an effective way to reverse the autophagy and activation of HSCs induced by arsenic poisoning.


Assuntos
Arsenitos , Transdução de Sinais , Compostos de Sódio , Animais , Masculino , Camundongos , Proteínas Quinases Ativadas por AMP/metabolismo , Proteínas Quinases Ativadas por AMP/genética , Arsenitos/toxicidade , Autofagia/efeitos dos fármacos , Histona Desmetilases/metabolismo , Histona Desmetilases/genética , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular/genética , Camundongos Endogâmicos C57BL , Proteínas Nucleares/metabolismo , Proteínas Nucleares/genética , Transdução de Sinais/efeitos dos fármacos , Compostos de Sódio/toxicidade
14.
Nanotechnology ; 35(32)2024 May 24.
Artigo em Inglês | MEDLINE | ID: mdl-38537264

RESUMO

This paper systematically studied the composition-controlled nonlinear optical properties and pulse modulation of ternary ReS2(1-x)Se2xalloys for the first time. The compositionally modulated characteristics of ReS2(1-x)Se2xon the band gap were simulated based on the first principles. We investigated the effect of the band gap on the saturable absorption properties. In addition, we demonstrated the modulation characteristics of different components ReS2(1-x)Se2xon 1.5µm Q-switched pulse performance. The Q-switched threshold, repetition rate, and pulse duration increase as the S(sulfur)-element composition rise. And pulse energy also was affected by the S(sulfur)-element composition. The ReS0.8Se1.2SA was selected to realize a conventional soliton with high energy in the all-fiber mode-locked laser. The pulse was centered at 1562.9 nm with a pulse duration of 2.26 ps, a repetition rate of 3.88 MHz, and maximum pulse energy of 1.95 nJ. This work suggests that ReS2(1-x)Se2xhas great potential in laser technology and nonlinear optics, and widely extends the material applications in ultrafast photonics.

15.
Sci Rep ; 14(1): 5228, 2024 03 04.
Artigo em Inglês | MEDLINE | ID: mdl-38433277

RESUMO

BAZ2A, an epigenetic regulatory factor that affects ribosomal RNA transcription, has been shown to be highly expressed in several cancers and promotes tumor cell migration. This study explored the expression and mechanism of BAZ2A in tumorigenesis at the pan-cancer level. The Cancer Genome Atlas, Gene Expression Omnibus databases and TIMER2.0, cBioPortal and other tools were used to analyze the level of expression of BAZ2A in various tumor tissues and to examine the relationship between BAZ2A and survival, prognosis, mutation and immune invasion. In vitro experiments were performed to assess the function of BAZ2A in cancer cells. Using combined transcriptome and proteome analysis, we examined the possible mechanism of BAZ2A in tumors. BAZ2A exhibited high expression levels in multiple tumor tissues and displayed a significant association with cancer patient prognosis. The main type of BAZ2A genetic variation in cancer is gene mutation. Downregulation of BAZ2A inhibited proliferation, migration, and invasion and promoted apoptosis in LM6 liver cancer cell. The mechanism of BAZ2A in cancer development may involve lipid metabolism. These results help expand our understanding of BAZ2A in tumorigenesis and development and suggest BAZ2A may serve as a prognostic and diagnostic factor in several cancers.


Assuntos
Neoplasias Hepáticas , Multiômica , Humanos , Prognóstico , Neoplasias Hepáticas/diagnóstico , Neoplasias Hepáticas/genética , Carcinogênese , Transformação Celular Neoplásica , Proteínas que Contêm Bromodomínio , Proteínas Cromossômicas não Histona
16.
Nanomaterials (Basel) ; 14(6)2024 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-38535692

RESUMO

In order to realize the effective separation of palladium from high-level liquid waste (HLLW), a ligand-supported adsorbent (NTAamide(C8)/SiO2-P) was prepared by the impregnation method in a vacuum. The SiO2-P carrier was synthesized by in situ polymerization of divinylbenzene and styrene monomers on a macroporous silica skeleton. The NTAamide(C8)/SiO2-P adsorbent was fabricated by impregnating an NTAamide(C8) ligand into the pore of a SiO2-P carrier under a vacuum condition. The adsorption performance of NTAamide(C8)/SiO2-P in nitric acid medium has been systematically studied. In a solution of 0.2 M HNO3, the distribution coefficient of Pd on NTAamide(C8)/SiO2-P was 1848 mL/g with an adsorption percentage of 90.24%. With the concentration of nitric acid increasing, the adsorption capacity of NTAamide(C8)/SiO2-P decreases. Compared to the other 10 potential interfering ions in fission products, NTAamide(C8)/SiO2-P exhibited excellent adsorption selectivity for Pd(II). The separation factor (SFPd/other metals > 77.8) is significantly higher than that of similar materials. The interference of NaNO3 had a negligible effect on the adsorption performance of NTAamide(C8)/SiO2-P, which maintained above 90%. The adsorption kinetics of Pd(II) adsorption on NTAamide(C8)/SiO2-P fits well with the pseudo-second order model. The Sips model is more suitable than the Langmuir and Freundlich model for describing the adsorption behavior. Thermodynamic analysis showed that the adsorption of Pd(II) on NTAamide(C8)/SiO2-P was a spontaneous, endothermic, and rapid process. NTAamide(C8)/SiO2-P also demonstrated good reusability and economic feasibility.

17.
Inorg Chem ; 63(14): 6465-6473, 2024 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-38528435

RESUMO

Two-dimensional inorganic-organic hybrid layered semiconductors are actively studied because of their naturally formed multiquantum well (MQW) structures and associated optical, photoelectric, and quantum optics characteristics. Silver benzeneselenolate (AgSePh, Ph = C6H5) is a new member of such hybrid layered materials, but has not fully been exploited. Herein, we present a quasi-solution method to prepare high quality free-standing AgSePh flake-like microcrystals by reacting diphenyl diselenide (Ph2Se2) with silver nanoparticles. The resultant AgSePh microflakes exhibit room-temperature (RT) resolvable MQW-induced quasi-particle quantization and interesting optical properties, such as three distinct excitonic resonance absorptions X1 (2.67 eV), X2 (2.71 eV), and X3 (2.83 eV) in the visible region, strong narrow-line width blue photoluminescence at ∼2.64 eV (470 nm) from the radiative recombination of the X1 exciton state, and a large exciton binding energy (∼0.35 eV). Furthermore, AgSePh microcrystals show high stability under water, oxygen, and heat environments, while above 220 °C, they will thermally decompose to silver and Ph2Se2 as evidenced by a combination of thermogravimetry and differential scanning calorimetry and pyrolysis-coupled gas chromatography-mass spectrometry studies. Finally, a comparison is extended between AgSePh and other metal benzeneselenolates, benzenethiolates, and alkanethiolates to clarify differences in their solubility, decomposition/melting temperature, and pyrolytic products.

18.
J Dev Orig Health Dis ; 15: e2, 2024 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-38450456

RESUMO

With the advancement of medical technology, there are increasing opportunities for new-borns, infants, and pregnant women to be exposed to general anaesthesia. Propofol is commonly used for the induction of anaesthesia, maintenance of general intravenous anaesthesia and sedation of intensive-care children. Many previous studies have found that propofol has organ-protective effects, but growing evidence suggests that propofol interferes with brain development, affecting learning and cognitive function. The purpose of this review is to summarize the latest progress in understanding the neurotoxicity of propofol. Evidence from case studies and clinical studies suggests that propofol has neurotoxicity on the developing brain. We classify the findings on propofol-induced neurotoxicity based on its damage mechanism. We end by summarizing the current protective strategies against propofol neurotoxicity. Fully understanding the neurotoxic mechanisms of propofol can help us use it at a reasonable dosage, reduce its side effects, and increase patient safety.


Assuntos
Anestesia , Propofol , Gravidez , Humanos , Feminino , Criança , Propofol/toxicidade , Anestésicos Intravenosos/efeitos adversos , Encéfalo , Cognição
19.
Nature ; 627(8005): 847-853, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38480885

RESUMO

Plant nucleotide-binding leucine-rich repeat (NLR) immune receptors with an N-terminal Toll/interleukin-1 receptor (TIR) domain mediate recognition of strain-specific pathogen effectors, typically via their C-terminal ligand-sensing domains1. Effector binding enables TIR-encoded enzymatic activities that are required for TIR-NLR (TNL)-mediated immunity2,3. Many truncated TNL proteins lack effector-sensing domains but retain similar enzymatic and immune activities4,5. The mechanism underlying the activation of these TIR domain proteins remain unclear. Here we show that binding of the TIR substrates NAD+ and ATP induces phase separation of TIR domain proteins in vitro. A similar condensation occurs with a TIR domain protein expressed via its native promoter in response to pathogen inoculation in planta. The formation of TIR condensates is mediated by conserved self-association interfaces and a predicted intrinsically disordered loop region of TIRs. Mutations that disrupt TIR condensates impair the cell death activity of TIR domain proteins. Our data reveal phase separation as a mechanism for the activation of TIR domain proteins and provide insight into substrate-induced autonomous activation of TIR signalling to confer plant immunity.


Assuntos
Trifosfato de Adenosina , Arabidopsis , NAD , Nicotiana , Separação de Fases , Proteínas de Plantas , Domínios Proteicos , Trifosfato de Adenosina/metabolismo , Arabidopsis/genética , Arabidopsis/imunologia , Arabidopsis/metabolismo , Proteínas de Arabidopsis/química , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/imunologia , Proteínas de Arabidopsis/metabolismo , Morte Celular , Mutação , NAD/metabolismo , Nicotiana/genética , Nicotiana/imunologia , Nicotiana/metabolismo , Proteínas NLR/química , Proteínas NLR/genética , Proteínas NLR/imunologia , Proteínas NLR/metabolismo , Doenças das Plantas/imunologia , Imunidade Vegetal/genética , Proteínas de Plantas/química , Proteínas de Plantas/genética , Proteínas de Plantas/imunologia , Proteínas de Plantas/metabolismo , Regiões Promotoras Genéticas , Domínios Proteicos/genética , Receptores Imunológicos/química , Receptores Imunológicos/genética , Receptores Imunológicos/imunologia , Receptores Imunológicos/metabolismo , Transdução de Sinais , Receptores Toll-Like/química , Receptores de Interleucina-1/química
20.
Biochem Biophys Res Commun ; 708: 149810, 2024 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-38531222

RESUMO

At present, the physiological roles of various hormones in fish glucose metabolism have been elucidated. Spexin, a 14-amino acids polypeptide, is highly conserved in many species and has functions such as reducing body weight and improving insulin resistance. In this paper, the open reading frame (ORF) of spx21 in grass carp (Ctenopharyngodon idella) was cloned, and the tissue distribution of spx1 and spx2, their direct and indirect regulatory effects on glucose metabolism of grass carp were investigated. The ORF of spx2 gene in grass carp was 279 bp in length. Moreover, spx1 was highly expressed in the adipose tissue, while spx2 was highly expressed in the brain. In vitro, SPX1 and SPX2 showed opposite effects on the glycolytic pathway in the primary hepatocytes. In vivo, intraperitoneal injection of SPX1 and SPX2 significantly reduced serum glucose levels and increased hepatopancreas glycogen contents. Meanwhile, SPX1 and SPX2 promoted the expression of key genes of glycolysis (pk) and glycogen synthesis (gys) in the hepatopancreas at 3 h post injection. As for indirect effects, 1000 nM SPX1 and SPX2 significantly increased insulin-mediated liver type phosphofructokinase (pfkla) mRNA expression and enhanced the inhibitory effects of insulin on glucose-6-phosphatase (g6pase), phosphoenolpyruvate carboxykinase (pepck), glycogen phosphorylase L (pygl) mRNA expression. Our results show that SPX1 and SPX2 have similar indirect effects on the regulation of glucose metabolism that enhance insulin activity, but they exhibit opposite roles in terms of direct effects.


Assuntos
Carpas , Glucose , Animais , Glucose/metabolismo , Carpas/metabolismo , Insulina , RNA Mensageiro/genética , Glicogênio , Proteínas de Peixes/genética , Proteínas de Peixes/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...