Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nat Commun ; 14(1): 692, 2023 02 08.
Artigo em Inglês | MEDLINE | ID: mdl-36754966

RESUMO

Huntington's disease (HD) is caused by an expanded CAG repeat in the huntingtin gene, yielding a Huntingtin protein with an expanded polyglutamine tract. While experiments with patient-derived induced pluripotent stem cells (iPSCs) can help understand disease, defining pathological biomarkers remains challenging. Here, we used cryogenic electron tomography to visualize neurites in HD patient iPSC-derived neurons with varying CAG repeats, and primary cortical neurons from BACHD, deltaN17-BACHD, and wild-type mice. In HD models, we discovered sheet aggregates in double membrane-bound organelles, and mitochondria with distorted cristae and enlarged granules, likely mitochondrial RNA granules. We used artificial intelligence to quantify mitochondrial granules, and proteomics experiments reveal differential protein content in isolated HD mitochondria. Knockdown of Protein Inhibitor of Activated STAT1 ameliorated aberrant phenotypes in iPSC- and BACHD neurons. We show that integrated ultrastructural and proteomic approaches may uncover early HD phenotypes to accelerate diagnostics and the development of targeted therapeutics for HD.


Assuntos
Doença de Huntington , Células-Tronco Pluripotentes Induzidas , Animais , Camundongos , Inteligência Artificial , Modelos Animais de Doenças , Proteína Huntingtina/genética , Proteína Huntingtina/metabolismo , Doença de Huntington/metabolismo , Células-Tronco Pluripotentes Induzidas/metabolismo , Mitocôndrias/metabolismo , Neurônios/metabolismo , Fenótipo , Proteômica , Humanos
2.
iScience ; 26(1): 105732, 2023 Jan 20.
Artigo em Inglês | MEDLINE | ID: mdl-36590162

RESUMO

Huntington disease (HD) is a neurodegenerative disorder caused by expanded CAG repeats in the huntingtin gene that alters cellular homeostasis, particularly in the striatum and cortex. Astrocyte signaling that establishes and maintains neuronal functions are often altered under pathological conditions. We performed single-nuclei RNA-sequencing on human HD patient-induced pluripotent stem cell (iPSC)-derived astrocytes and on striatal and cortical tissue from R6/2 HD mice to investigate high-resolution HD astrocyte cell state transitions. We observed altered maturation and glutamate signaling in HD human and mouse astrocytes. Human HD astrocytes also showed upregulated actin-mediated signaling, suggesting that some states may be cell-autonomous and human specific. In both species, astrogliogenesis transcription factors may drive HD astrocyte maturation deficits, which are supported by rescued climbing deficits in HD drosophila with NFIA knockdown. Thus, dysregulated HD astrocyte states may induce dysfunctional astrocytic properties, in part due to maturation deficits influenced by astrogliogenesis transcription factor dysregulation.

3.
Hum Mol Genet ; 32(9): 1483-1496, 2023 04 20.
Artigo em Inglês | MEDLINE | ID: mdl-36547263

RESUMO

Astrocytes and brain endothelial cells are components of the neurovascular unit that comprises the blood-brain barrier (BBB) and their dysfunction contributes to pathogenesis in Huntington's disease (HD). Defining the contribution of these cells to disease can inform cell-type-specific effects and uncover new disease-modifying therapeutic targets. These cells express integrin (ITG) adhesion receptors that anchor the cells to the extracellular matrix (ECM) to maintain the integrity of the BBB. We used HD patient-derived induced pluripotent stem cell (iPSC) modeling to study the ECM-ITG interface in astrocytes and brain microvascular endothelial cells and found ECM-ITG dysregulation in human iPSC-derived cells that may contribute to the dysfunction of the BBB in HD. This disruption has functional consequences since reducing ITG expression in glia in an HD Drosophila model suppressed disease-associated CNS dysfunction. Since ITGs can be targeted therapeutically and manipulating ITG signaling prevents neurodegeneration in other diseases, defining the role of ITGs in HD may provide a novel strategy of intervention to slow CNS pathophysiology to treat HD.


Assuntos
Doença de Huntington , Integrinas , Humanos , Integrinas/metabolismo , Células Endoteliais/metabolismo , Doença de Huntington/patologia , Neuroglia/metabolismo , Barreira Hematoencefálica/metabolismo , Matriz Extracelular/metabolismo
4.
Nat Neurosci ; 25(2): 226-237, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-35115730

RESUMO

Answer ALS is a biological and clinical resource of patient-derived, induced pluripotent stem (iPS) cell lines, multi-omic data derived from iPS neurons and longitudinal clinical and smartphone data from over 1,000 patients with ALS. This resource provides population-level biological and clinical data that may be employed to identify clinical-molecular-biochemical subtypes of amyotrophic lateral sclerosis (ALS). A unique smartphone-based system was employed to collect deep clinical data, including fine motor activity, speech, breathing and linguistics/cognition. The iPS spinal neurons were blood derived from each patient and these cells underwent multi-omic analytics including whole-genome sequencing, RNA transcriptomics, ATAC-sequencing and proteomics. The intent of these data is for the generation of integrated clinical and biological signatures using bioinformatics, statistics and computational biology to establish patterns that may lead to a better understanding of the underlying mechanisms of disease, including subgroup identification. A web portal for open-source sharing of all data was developed for widespread community-based data analytics.


Assuntos
Esclerose Lateral Amiotrófica , Células-Tronco Pluripotentes Induzidas , Esclerose Lateral Amiotrófica/genética , Esclerose Lateral Amiotrófica/metabolismo , Linhagem Celular , Humanos , Células-Tronco Pluripotentes Induzidas/metabolismo , Neurônios Motores/fisiologia
5.
Proc Natl Acad Sci U S A ; 118(4)2021 01 26.
Artigo em Inglês | MEDLINE | ID: mdl-33468657

RESUMO

DNA damage repair genes are modifiers of disease onset in Huntington's disease (HD), but how this process intersects with associated disease pathways remains unclear. Here we evaluated the mechanistic contributions of protein inhibitor of activated STAT-1 (PIAS1) in HD mice and HD patient-derived induced pluripotent stem cells (iPSCs) and find a link between PIAS1 and DNA damage repair pathways. We show that PIAS1 is a component of the transcription-coupled repair complex, that includes the DNA damage end processing enzyme polynucleotide kinase-phosphatase (PNKP), and that PIAS1 is a SUMO E3 ligase for PNKP. Pias1 knockdown (KD) in HD mice had a normalizing effect on HD transcriptional dysregulation associated with synaptic function and disease-associated transcriptional coexpression modules enriched for DNA damage repair mechanisms as did reduction of PIAS1 in HD iPSC-derived neurons. KD also restored mutant HTT-perturbed enzymatic activity of PNKP and modulated genomic integrity of several transcriptionally normalized genes. The findings here now link SUMO modifying machinery to DNA damage repair responses and transcriptional modulation in neurodegenerative disease.


Assuntos
Enzimas Reparadoras do DNA/genética , Reparo do DNA , DNA/genética , Proteína Huntingtina/genética , Doença de Huntington/genética , Fosfotransferases (Aceptor do Grupo Álcool)/genética , Proteínas Inibidoras de STAT Ativados/genética , Processamento de Proteína Pós-Traducional , Proteínas Modificadoras Pequenas Relacionadas à Ubiquitina/genética , Animais , Diferenciação Celular , DNA/metabolismo , Dano ao DNA , Enzimas Reparadoras do DNA/metabolismo , Modelos Animais de Doenças , Feminino , Humanos , Proteína Huntingtina/metabolismo , Doença de Huntington/metabolismo , Doença de Huntington/patologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Neurônios/metabolismo , Neurônios/patologia , Fosfotransferases (Aceptor do Grupo Álcool)/metabolismo , Células-Tronco Pluripotentes/metabolismo , Células-Tronco Pluripotentes/patologia , Cultura Primária de Células , Proteínas Inibidoras de STAT Ativados/antagonistas & inibidores , Proteínas Inibidoras de STAT Ativados/metabolismo , RNA Interferente Pequeno/genética , RNA Interferente Pequeno/metabolismo , Proteínas Modificadoras Pequenas Relacionadas à Ubiquitina/antagonistas & inibidores , Proteínas Modificadoras Pequenas Relacionadas à Ubiquitina/metabolismo , Sumoilação , Transcrição Gênica
6.
Stem Cell Reports ; 14(3): 406-419, 2020 03 10.
Artigo em Inglês | MEDLINE | ID: mdl-32109367

RESUMO

Aberrant neuronal development and the persistence of mitotic cellular populations have been implicated in a multitude of neurological disorders, including Huntington's disease (HD). However, the mechanism underlying this potential pathology remains unclear. We used a modified protocol to differentiate induced pluripotent stem cells (iPSCs) from HD patients and unaffected controls into neuronal cultures enriched for medium spiny neurons, the cell type most affected in HD. We performed single-cell and bulk transcriptomic and epigenomic analyses and demonstrated that a persistent cyclin D1+ neural stem cell (NSC) population is observed selectively in adult-onset HD iPSCs during differentiation. Treatment with a WNT inhibitor abrogates this NSC population while preserving neurons. Taken together, our findings identify a mechanism that may promote aberrant neurodevelopment and adult neurogenesis in adult-onset HD striatal neurons with the potential for therapeutic compensation.


Assuntos
Doença de Huntington/patologia , Células-Tronco Pluripotentes Induzidas/patologia , Neurônios/patologia , Via de Sinalização Wnt , Adulto , Idade de Início , Ciclo Celular/genética , Diferenciação Celular/genética , Células Cultivadas , Epigênese Genética , Humanos , Doença de Huntington/genética , Mitose , Neostriado/patologia , Células-Tronco Neurais/metabolismo , Fatores de Transcrição/metabolismo , Transcriptoma/genética , Regulação para Cima/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...