Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 51
Filtrar
1.
Curr Med Chem ; 2024 Feb 22.
Artigo em Inglês | MEDLINE | ID: mdl-38409700

RESUMO

Diabetic coronary heart disease is a global medical problem that poses a serious threat to human health, and its pathogenesis is complex and interconnected. Nicotinamide adenine dinucleotide (NAD) is an important small molecule used in the body that serves as a coenzyme in redox reactions and as a substrate for non-redox processes. NAD levels are highly controlled by various pathways, and increasing evidence has shown that NAD pathways, including NAD precursors and key enzymes involved in NAD synthesis and catabolism, exert both positive and negative effects on the pathogenesis of diabetic coronary heart disease. Thus, the mechanisms by which the NAD pathway acts in diabetic coronary heart disease require further investigation. This review first briefly introduces the current understanding of the intertwined pathological mechanisms of diabetic coronary heart disease, including insulin resistance, dyslipidemia, oxidative stress, chronic inflammation, and intestinal flora dysbiosis. Then, we mainly review the relationships between NAD pathways, such as nicotinic acid, tryptophan, the kynurenine pathway, nicotinamide phosphoribosyltransferase, and sirtuins, and the pathogenic mechanisms of diabetic coronary heart disease. Moreover, we discuss the potential of targeting NAD pathways in the prevention and treatment of diabetic coronary heart disease, which may provide important strategies to modulate its progression.

2.
Eur J Pharmacol ; 967: 176395, 2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38350592

RESUMO

Cardiac fibrosis, the hallmark of cardiovascular disease, is characterized by excessive deposition of extracellular matrix in the heart. Emerging evidence indicates that cardiac fibroblasts (CFs) play pivotal roles in driving cardiac fibrosis. However, due to incomplete insights into CFs, there are limited effective approaches to prevent or reverse cardiac fibrosis currently. Palmatine, a protoberberine alkaloid extracted from traditional Chinese botanical remedies, possesses diverse biological effects. This study investigated the potential therapeutic value and mechanism of palmatine against cardiac fibrosis. Adult male C57BL/6 mice were treated with vehicle, isoproterenol (ISO), or ISO plus palmatine for one week. After echocardiography assessment, mice hearts were collected for histopathology, real-time polymerase chain reaction, and Western blot analyses. Primary rat CFs were utilized in vitro. Compared to control, ISO-treated mice exhibited cardiac hypertrophy and structural abnormalities; however, treatment with palmatine ameliorated these effects of ISO. Moreover, palmatine treatment mitigated ISO-induced cardiac fibrosis. Network pharmacology and molecular docking analysis showed that palmatine strongly binds the regulators of cardiac fibrosis including signal transducer and activator of transcription 3 (STAT3) and mammalian target of rapamycin. Furthermore, palmatine reduced the elevated fibrotic factor expressions and overactivated STAT3 induced by ISO, Transformed growth factor ß1 (TGF-ß1), or interleukin-6 both in vivo and in vitro. Additionally, blocking STAT3 suppressed the TGF-ß1-induced CF activation. Collectively, these data demonstrated that palmatine attenuated cardiac fibrosis partly by inhibiting fibroblast activation through the STAT3 pathway. This provides an experimental basis for the clinical treatment of cardiac fibrosis with palmatine.


Assuntos
Alcaloides de Berberina , Cardiomiopatias , Fator de Crescimento Transformador beta1 , Ratos , Masculino , Animais , Camundongos , Fator de Crescimento Transformador beta1/metabolismo , Fator de Transcrição STAT3/metabolismo , Simulação de Acoplamento Molecular , Camundongos Endogâmicos C57BL , Cardiomiopatias/metabolismo , Isoproterenol/farmacologia , Fibroblastos , Fibrose , Miocárdio/metabolismo , Mamíferos
3.
J Ethnopharmacol ; 324: 117705, 2024 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-38219878

RESUMO

BACKGROUND: Research on the Chinese herbal formula Fufang Zhenzhu Tiaozhi (FTZ) has demonstrated its effectiveness in treating hyperlipidemia and glycolipid metabolic disorders. Additionally, FTZ has shown inhibitory effects on oxidative stress, regulation of lipid metabolism, and reduction of inflammation in these conditions. However, the precise mechanisms through which FTZ modulates macrophage function in atherosclerosis remain incompletely understood. Therefore, this study aims to investigate whether FTZ can effectively stabilize rupture-prone plaques by suppressing macrophage pyroptosis and impeding the development of M1 macrophage polarization in ApoE-/- mice. METHODS: To assess the impact of FTZ on macrophage function and atherosclerosis in ApoE-/- mice, we orally administered FTZ at a dosage of 1.2 g/kg body weight daily for 14 weeks. Levels of interleukin-18 and interleukin-1ß were quantified using ELISA kits to gauge FTZ's influence on inflammation. Total cholesterol content was measured with a Cholesterol Assay Kit to evaluate FTZ's effect on lipid metabolism. Aortic tissues were stained with Oil Red O, and immunohistochemistry techniques were applied to assess atherosclerotic lesions and plaque stability. To evaluate the effects of FTZ on macrophage pyroptosis and oxidative damage, immunofluorescence staining was utilized. Additionally, we conducted an analysis of protein and mRNA expression levels of NLRP3 inflammasome-related genes and macrophage polarization-related genes using RT-PCR and western blotting techniques. RESULTS: This study illustrates the potential therapeutic effectiveness of FTZ in mitigating the severity of atherosclerosis and improving serum lipid profiles by inhibiting inflammation. The observed enhancements in atherosclerosis severity and inflammation can be attributed to the suppression of NLRP3 inflammasome activity and M1 polarization by FTZ. CONCLUSION: The current findings indicate that FTZ provides protection against atherosclerosis, positioning it as a promising candidate for novel therapies targeting atherosclerosis and related cardiovascular diseases.


Assuntos
Aterosclerose , Medicamentos de Ervas Chinesas , Placa Aterosclerótica , Camundongos , Animais , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Inflamassomos/metabolismo , Piroptose , Placa Aterosclerótica/tratamento farmacológico , Placa Aterosclerótica/metabolismo , Aterosclerose/genética , Inflamação/tratamento farmacológico , Colesterol , Macrófagos/metabolismo , Apolipoproteínas E/genética
4.
Diabetes Metab Syndr Obes ; 16: 3223-3234, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37867629

RESUMO

Purpose: Ginsenoside Rb1 (Rb1), one of the crucial bioactive constituents in Panax ginseng C. A. Mey., possesses anti-type 2 diabetes mellitus (T2DM) property. Nevertheless, the precise mechanism, particularly the impact of Rb1 on hepatic glycogen production, a crucial process in the advancement of T2DM, remains poorly understood. 15-hydroxyprostaglandin dehydrogenase (15-PGDH) is responsible for prostaglandin E2 (PGE2) inactivation. A recent study has reported that inhibition of 15-PGDH promoted hepatic glycogen synthesis and improved T2DM. Therefore, herein, we aimed to investigate whether Rb1 ameliorated T2DM through 15-PGDH/PGE2-regulated hepatic glycogen synthesis. Methods: By combining streptozotocin with a high-fat diet, we successfully established a mouse model for T2DM. Afterward, these mice were administered Rb1 or metformin for 8 weeks. An insulin-resistant cell model was established by incubating LO2 cells with palmitic acid. Liver glycogen and PGE2 levels, the expression levels of 15-PGDH, serine/threonine kinase AKT (AKT), and glycogen synthase kinase 3 beta (GSK3ß) were measured. Molecular docking was used to predict the binding affinity between 15-PGDH and Rb1. Results: Rb1 administration increased the phosphorylation levels of AKT and GSK3ß to enhance glycogen synthesis in the liver of T2DM mice. Molecular docking indicated that Rb1 had a high affinity for 15-PGDH. Moreover, Rb1 treatment resulted in the suppression of elevated 15-PGDH levels and the elevation of decreased PGE2 levels in the liver of T2DM mice. Furthermore, in vitro experiments showed that Rb1 administration might enhance glycogen production by modulating the 15-PGDH/PGE2/PGE2 receptor EP4 pathway. Conclusion: Our findings indicate that Rb1 may enhance liver glycogen production through a 15-PGDH-dependent pathway to ameliorate T2DM, thereby offering a new explanation for the positive impact of Rb1 on T2DM and supporting its potential as an effective therapeutic approach for T2DM.

5.
Bioorg Chem ; 137: 106646, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37285764

RESUMO

Type 2 diabetes mellitus (T2DM) is a rapidly growing epidemic that results in increased morbidity, mortality, and soaring medical costs. Prostaglandin E2 (PGE2), a vital lipid mediator, has been reported to protect against hepatic steatosis, inflammation, endoplasmic reticulum (ER) stress, and insulin resistance, indicating its potential therapeutic role in T2DM. PGE2 can be degraded by 15-hydroxyprostaglandin dehydrogenase (15-PGDH). SW033291, an inhibitor of 15-PGDH, has been reported to increase PGE2 levels, however, the effect of SW033291 in T2DM remains to be explored. This study aims to evaluate whether SW033291 protects against T2DM and explore its potential mechanisms. A T2DM mouse model was established through high-fat diet/streptozotocin injection, while palmitic acid-treated mouse primary hepatocytes were used as insulin-resistant cell models. SW033291 treatment reduced body weight, fat weight, fasting blood glucose, and improved impaired glucose tolerance and insulin resistance in T2DM mice. More importantly, SW033291 alleviated steatosis, inflammation, and ER stress in the liver of T2DM mice. Mechanistically, SW033291 decreased the expressions of SREBP-1c and ACC1, and increased the expression of PPARα in T2DM mice. Additionally, SW033291 inhibited NF-κB and eIF2α/CHOP signaling in T2DM mice. Further, we showed that the protective effects of SW033291 on the above-mentioned pathophysiological processes could be hindered by inhibition of the PGE2 receptor EP4. Overall, our study reveals a novel role of SW033291 in alleviating T2DM and suggests its potential as a new therapeutic strategy for T2DM.


Assuntos
Diabetes Mellitus Tipo 2 , Fígado Gorduroso , Resistência à Insulina , Camundongos , Animais , Dinoprostona/metabolismo , Diabetes Mellitus Tipo 2/tratamento farmacológico , Diabetes Mellitus Tipo 2/metabolismo , Metabolismo dos Lipídeos , Resistência à Insulina/fisiologia , Fígado/metabolismo , Inflamação/tratamento farmacológico , Inflamação/metabolismo , Fígado Gorduroso/metabolismo
6.
Biomed Pharmacother ; 164: 114919, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37302318

RESUMO

Diabetic cardiomyopathy (DCM) is an important complication leading to the death of patients with diabetes, but there is no effective strategy for clinical treatments. Fufang Zhenzhu Tiaozhi (FTZ) is a patent medicine that is a traditional Chinese medicine compound preparation with comprehensive effects for the prevention and treatment of glycolipid metabolic diseases under the guidance of "modulating liver, starting pivot and cleaning turbidity". FTZ was proposed by Professor Guo Jiao and is used for the clinical treatment of hyperlipidemia. This study was designed to explore the regulatory mechanisms of FTZ on heart lipid metabolism dysfunction and mitochondrial dynamics disorder in mice with DCM, and it provides a theoretical basis for the myocardial protective effect of FTZ in diabetes. In this study, we demonstrated that FTZ protected heart function in DCM mice and downregulated the overexpression of free fatty acids (FFAs) uptake-related proteins cluster of differentiation 36 (CD36), fatty acid binding protein 3 (FABP3) and carnitine palmitoyl transferase 1 (CPT1). Moreover, FTZ treatment showed a regulatory effect on mitochondrial dynamics by inhibiting mitochondrial fission and promoting mitochondrial fusion. We also identified in vitro that FTZ could restore lipid metabolism-related proteins, mitochondrial dynamics-related proteins and mitochondrial energy metabolism in PA-treated cardiomyocytes. Our study indicated that FTZ improves the cardiac function of diabetic mice by attenuating the increase in fasting blood glucose levels, inhibiting the decrease in body weight, alleviating disordered lipid metabolism, and restoring mitochondrial dynamics and myocardial apoptosis in diabetic mouse hearts.


Assuntos
Diabetes Mellitus Experimental , Cardiomiopatias Diabéticas , Medicamentos de Ervas Chinesas , Doenças Metabólicas , Camundongos , Animais , Cardiomiopatias Diabéticas/tratamento farmacológico , Cardiomiopatias Diabéticas/metabolismo , Metabolismo dos Lipídeos , Dinâmica Mitocondrial , Medicamentos de Ervas Chinesas/farmacologia , Medicamentos de Ervas Chinesas/uso terapêutico , Medicamentos de Ervas Chinesas/metabolismo , Diabetes Mellitus Experimental/complicações , Diabetes Mellitus Experimental/tratamento farmacológico , Diabetes Mellitus Experimental/metabolismo , Miócitos Cardíacos , Doenças Metabólicas/tratamento farmacológico
7.
Cell Signal ; 108: 110707, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37164143

RESUMO

Type 2 diabetes mellitus (T2DM) is associated with high rates of morbidity and mortality worldwide. Prostaglandin E2 (PGE2) is a lipid signaling molecule that can ameliorate the symptoms of some metabolic diseases, including T2DM, and improve tissue repair and regeneration. Although SW033291 can increase PGE2 levels through its action as a small molecule inhibitor of the PGE2-degrading enzyme 15-hydroxyprostaglandin dehydrogenase, its effects on T2DM remain unclear. In the present study, we evaluated whether SW033291 treatment exerts a protective effect against T2DM and explored the underlying mechanisms. A T2DM mouse model was established using a high-fat diet combined with streptozotocin treatment. Palmitic acid-treated LO2 cells were used as an insulin-resistant cell model. SW033291 treatment reduced body weight and fasting blood glucose levels as well as serum triglyceride, total cholesterol, and low-density lipoprotein cholesterol levels in vivo. In addition to ameliorating glucose and insulin tolerance, SW033291 treatment reversed the T2DM-induced decrease in glycogen synthesis and increase in gluconeogenesis in the liver. Furthermore, SW033291 administration increased hepatic glycogen synthase kinase 3 beta (GSK3ß) phosphorylation levels to promote glycogen synthesis. SW033291 treatment also inhibited gluconeogenesis by upregulating AKT serine/threonine kinase (AKT) and forkhead box O1 (FOXO1) phosphorylation and reducing glucose-6-phosphatase and phosphoenolpyruvate carboxykinase 1 expression in the livers of T2DM model mice. Additionally, SW033291 treatment improved abnormal hepatic glucose metabolism through the PGE2-EP4 receptor-AKT-GSK3ß/FOXO1 signaling pathway in vitro. These results suggest a novel role of SW033291 in improving T2DM and support its potential as a novel therapeutic agent.


Assuntos
Diabetes Mellitus Tipo 2 , Resistência à Insulina , Animais , Camundongos , Colesterol/metabolismo , Diabetes Mellitus Tipo 2/metabolismo , Dinoprostona/metabolismo , Modelos Animais de Doenças , Glucose/metabolismo , Glicogênio/metabolismo , Glicogênio Sintase Quinase 3 beta/metabolismo , Fígado/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Transdução de Sinais , Insulina/metabolismo
8.
J Ethnopharmacol ; 315: 116564, 2023 Oct 28.
Artigo em Inglês | MEDLINE | ID: mdl-37244407

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: Fufang-Zhenzhu-Tiaozhi capsule (FTZ), a Traditional Chinese Medicine (TCM) patent prescription commonly used in clinical practice, has a significant curative effect on hyperglycemia and hyperlipidemia. Previous studies have shown that FTZ can treat diabetes, but the effect of FTZ on ß-cell regeneration needs to be further explored in T1DM mice. AIM OF THE STUDY: The aim is to investigate the role of FTZ in promoting ß-cell regeneration in T1DM mice, and to further explore its mechanism. MATERIALS AND METHODS: C57BL/6 mice were used as control. NOD/LtJ mice were divided into the Model group and FTZ group. Oral glucose tolerance, fasting blood glucose, and fasting insulin level were measured. Immunofluorescence staining was used to detect the level of ß-cell regeneration and the composition of α-cells and ß-cells in islets. Hematoxylin and eosin staining was used to detect the infiltration degree of inflammatory cells. The apoptosis of islet cells was detected by terminal deoxynucleotidyl transferase deoxyuridine triphosphate nick end labeling. Western blotting was used to detect the expression levels of Pancreas/duodenum homeobox protein 1 (PDX-1), V-maf musculoaponeurotic fibrosarcoma oncogene homolog A (MAFA), and Neurogenin-3 (NGN3). RESULTS: FTZ could increase insulin levels and reduce the glucose level of T1DM mice and promote ß-cell regeneration. FTZ also inhibited the invasion of inflammatory cells and the islet cell apoptosis, and maintained the normal composition of islet cells, thus preserving the quantity and quality of ß-cells. Furthermore, FTZ promoting ß-cell regeneration was accompanied by increasing the expression of PDX-1, MAFA, and NGN3. CONCLUSION: FTZ can restore the insulin-secreting function of the impaired pancreatic islet, improve blood glucose level, possibly via the enhancing ß cell regeneration via upregulation of PDX-1, MAFA, and NGN3 in T1DM mice, and may be a potential therapeutic drug for T1DM.


Assuntos
Diabetes Mellitus Tipo 1 , Células Secretoras de Insulina , Ilhotas Pancreáticas , Camundongos , Animais , Diabetes Mellitus Tipo 1/metabolismo , Glicemia/metabolismo , Camundongos Endogâmicos NOD , Camundongos Endogâmicos C57BL , Ilhotas Pancreáticas/metabolismo , Células Secretoras de Insulina/metabolismo , Insulina , Regeneração , Proliferação de Células
9.
Front Immunol ; 14: 1084636, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36814909

RESUMO

Macrophages have a wide variety of roles in physiological and pathological conditions, making them promising diagnostic and therapeutic targets in diseases, especially metabolic disorders, which have attracted considerable attention in recent years. Owing to their heterogeneity and polarization, the phenotypes and functions of macrophages related to metabolic disorders are diverse and complicated. In the past three decades, the rapid progress of macrophage research has benefited from the emergence of specific molecular markers to delineate different phenotypes of macrophages and elucidate their role in metabolic disorders. In this review, we analyze the functions and applications of commonly used and novel markers of macrophages related to metabolic disorders, facilitating the better use of these macrophage markers in metabolic disorder research.


Assuntos
Macrófagos , Doenças Metabólicas , Humanos , Macrófagos/metabolismo , Fenótipo , Biomarcadores/metabolismo , Doenças Metabólicas/metabolismo
10.
J Ethnopharmacol ; 301: 115791, 2023 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-36240976

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: Fufang-zhenzhu-tiaozhi formula (FTZ) is a patented preparation of traditional Chinese medicine that has been used to treat hyperglycemia and hyperlipidemia in the clinic for almost 10 years. Our previous study had demonstrated that FTZ can protect islet ß cell injury in vitro. However, the efficacy of FTZ on ß cell regeneration in vivo and the involved anti-diabetic mechanism remains unknown. AIM OF THE STUDY: We aim to investigate the effects of FTZ as a good remedy for islet protection and ß cell regeneration, and to reveal the underlying mechanism. MATERIALS AND METHODS: C57BL/6 mice were fed with high-fat diet for 3 weeks and then intraperitoneally injected with streptozotocin (90 mg/kg/d × 1 d) to establish type 2 diabetes (T2D) models. Mice in each group were divided into three batches that sacrificed after 3, 7 and 28 days of FTZ administration. Body weight, blood glucose, and oral glucose tolerance test were measured at indicated time points. Fasting insulin was determined by enzyme-linked immunosorbent assay (ELISA) kit. Neonatal ß cell was assessed by insulin & PCNA double immunofluorescence staining, and the underlying mechanisms related to ß cell regeneration were further performed by hematoxylin-eosin staining, insulin & glucagon double immunofluorescence staining and Western blot. RESULTS: FTZ and metformin can significantly help with the symptoms of DM, such as alleviating weight loss, reducing blood glucose, improving the level of insulin in vivo, and relieving insulin resistance, suggesting FTZ and metformin treatment maintained the normal morphological function of islet. Notably, ß cell regeneration, which is indicated by insulin and PCNA double-positive cells, was promoted by FTZ, whereas few neonatal ß cells were observed in metformin group. Hematoxylin-eosin staining, and its quantification results showed that FTZ effectively prevented the invasion of inflammatory cells into the islets in diabetic mice. Most ß cells in the islets of diabetic model mice were devoid, and the islets were almost all α cells, while the diabetic mice administered FTZ could still maintain about half of the ß cells in the islet. Furthermore, FTZ upregulated the expression of critical transcription factors during ß cell development and maturation (such as PDX-1, MAFA and NGN3) in diabetic mice. CONCLUSIONS: FTZ can alleviate diabetes symptoms and promote ß cell regeneration in diabetic mice. Moreover, FTZ promotes ß cell regeneration by preserving islet (resisting inflammatory cells invading islets), maintaining the number of ß cells in islets, and increasing the expression of PDX-1, MAFA and NGN3.


Assuntos
Diabetes Mellitus Experimental , Diabetes Mellitus Tipo 2 , Ilhotas Pancreáticas , Metformina , Camundongos , Animais , Glicemia/metabolismo , Diabetes Mellitus Tipo 2/metabolismo , Diabetes Mellitus Experimental/metabolismo , Amarelo de Eosina-(YS)/metabolismo , Amarelo de Eosina-(YS)/farmacologia , Hematoxilina/metabolismo , Hematoxilina/farmacologia , Antígeno Nuclear de Célula em Proliferação/metabolismo , Camundongos Endogâmicos C57BL , Insulina , Regeneração , Metformina/farmacologia
11.
Biochem Pharmacol ; 207: 115357, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36455672

RESUMO

Atherosclerosis, a trigger of cardiovascular disease, poses grave threats to human health. Although atherosclerosis depends on lipid accumulation and vascular wall inflammation, abnormal phenotypic regulation of macrophages is considered the pathological basis of atherosclerosis. Macrophage polarization mainly refers to the transformation of macrophages into pro-inflammatory (M1) or anti-inflammatory (M2) phenotypes, which has recently become a much-discussed topic. Increasing evidence has shown that M2 macrophage polarization can alleviate atherosclerosis progression. PGE2 is a bioactive lipid that has been observed to be elevated in atherosclerosis and to play a pro-inflammatory role, yet recent studies have reported that PGE2 promotes anti-inflammatory M2 macrophage polarization and mitigates atherosclerosis progression. However, the mechanisms by which PGE2 acts remain unclear. This review summarizes current knowledge of PGE2 and macrophages in atherosclerosis. Additionally, we discuss potential PGE2 mechanisms of macrophage polarization, including CREB, NF-κB, and STAT signaling pathways, which may provide important therapeutic strategies based on targeting PGE2 pathways to modulate macrophage polarization for atherosclerosis treatment.


Assuntos
Aterosclerose , Dinoprostona , Humanos , Dinoprostona/metabolismo , Aterosclerose/metabolismo , Transdução de Sinais , NF-kappa B/metabolismo , Macrófagos/metabolismo , Ativação de Macrófagos
12.
Biomed Pharmacother ; 156: 113831, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36228370

RESUMO

BACKGROUND: Diabetes mellitus-related coronary heart disease (DM-CHD) is the most common cause of death in diabetic patients. Various studies have shown that Chinese medicine Fufang-Zhenzhu-Tiaozhi capsule (FTZ) has therapeutic effects on cardiovascular diseases. More research is required to determine the mechanism of FTZ protection against coronary atherosclerosis. OBJECTIVE: To investigate the unique mechanism of FTZ in treatment of DM-CHD minipigs with coronary atherosclerosis. METHODS: High-fat/high-sucrose/high-cholesterol diet combined with streptozotocin and coronary balloon injury were used to induce DM-CHD minipig model, which was then randomly divided into: DM-CHD model, DM-CHD treated with FTZ or positive drug (Metformin + Atorvastatin, M+A). After twenty-two weeks, ultrasonography, electrocardiography, and image detection were employed to detect cardiac functions and assess coronary artery stenosis and plaque. Human umbilical vein endothelial cells (HUVECs) were treated high glucose or/and FTZ. Pigs tissues and treated-cells were collected for further testing. RESULTS: In DM-CHD minipigs, FTZ treatment significantly reduced disordered glycolipid metabolism similar as M+A administration. FTZ and M+A also alleviated coronary stenosis and myocardial injury. In addition, IκB and NF-κB phosphorylation levels, as well as the protein levels of IL-1ß, Bax, cleave-Caspase 3, Bcl-2, and α-SMA were dramatically increased in the DM-CHD coronary artery, whereas CD31 and VE-cadherin expressions were decreased. Similar to M+A, FTZ reversed these protein levels in the DM-CHD coronary artery. Furthermore, FTZ ameliorated the damage and high migration activity of HUVECs induced by high glucose. CONCLUSIONS: FTZ improves coronary atherosclerosis through modulating inflammation, alleviating apoptosis, and inhibiting EndMT of coronary artery to protects against DM-CHD.


Assuntos
Doença da Artéria Coronariana , Diabetes Mellitus , Animais , Humanos , Doença da Artéria Coronariana/tratamento farmacológico , Células Endoteliais , Glucose , Medicina Tradicional Chinesa , Suínos , Porco Miniatura
13.
Research (Wash D C) ; 2022: 9891689, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36299447

RESUMO

CCAAT/enhancer-binding proteins (C/EBPs) are a family of at least six identified transcription factors that contain a highly conserved basic leucine zipper domain and interact selectively with duplex DNA to regulate target gene expression. C/EBPs play important roles in various physiological processes, and their abnormal function can lead to various diseases. Recently, accumulating evidence has demonstrated that aberrant C/EBP expression or activity is closely associated with the onset and progression of fibrosis in several organs and tissues. During fibrosis, various C/EBPs can exert distinct functions in the same organ, while the same C/EBP can exert distinct functions in different organs. Modulating C/EBP expression or activity could regulate various molecular processes to alleviate fibrosis in multiple organs; therefore, novel C/EBPs-based therapeutic methods for treating fibrosis have attracted considerable attention. In this review, we will explore the features of C/EBPs and their critical functions in fibrosis in order to highlight new avenues for the development of novel therapies targeting C/EBPs.

14.
Front Pharmacol ; 13: 973927, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36046814

RESUMO

The global morbidity of obesity and type 2 diabetes mellitus (T2DM) has dramatically increased. Insulin resistance is the most important pathogenesis and therapeutic target of T2DM. The traditional Chinese medicine formula Astragalus mongholicus powder (APF), consists of Astragalus mongholicus Bunge [Fabaceae], Pueraria montana (Lour.) Merr. [Fabaceae], and Morus alba L. [Moraceae] has a long history to be used to treat diabetes in ancient China. This work aims to investigate the effects of APF on diabetic mice and its underlying mechanism. Diabetic mice were induced by High-fat-diet (HFD) and streptozotocin (STZ). The body weight of mice and their plasma levels of glucose, insulin, leptin and lipids were examined. Reverse transcription-polymerase chain reaction, histology, and Western blot analysis were performed to validate the effects of APF on diabetic mice and investigate the underlying mechanism. APF reduced hyperglycemia, hyperinsulinemia, and hyerleptinemia and attenuate the progression of obesity and non-alcoholic fatty liver disease (NAFLD). However, these effects disappeared in leptin deficient ob/ob diabetic mice and STZ-induced insulin deficient type 1 diabetic mice. Destruction of either these hormones would abolish the therapeutic effects of APF. In addition, APF inhibited the protein expression of PTP1B suppressing insulin-leptin sensitivity, the gluconeogenic gene PEPCK, and the adipogenic gene FAS. Therefore, insulin-leptin sensitivity was normalized, and the gluconeogenic and adipogenic genes were suppressed. In conclusion, APF attenuated obesity, NAFLD, and T2DM by regulating the balance of adipoinsular axis in STZ + HFD induced T2DM mice.

15.
Chin Med ; 17(1): 102, 2022 Aug 30.
Artigo em Inglês | MEDLINE | ID: mdl-36042482

RESUMO

BACKGROUND: Renal injury is one of the common microvascular complications of diabetes, known as diabetic kidney disease (DKD) seriously threatening human health. Previous research has reported that the Chinese Medicine Fufang-Zhenzhu-Tiaozhi (FTZ) capsule protected myocardia from injury in diabetic minipigs with coronary heart disease (DM-CHD). And we found significant renal injury in the minipigs. Therefore, we further investigated whether FTZ prevents renal injury of DM-CHD minipig and H2O2-induced oxidative injury of HK-2 cells. METHODS: DM-CHD model was established by streptozotocin injection, high fat/high-sucrose/high-cholesterol diet combined with balloon injury in the coronary artery. Blood lipid profile, fasting blood glucose (FBG), and SOD were measured with kits. The levels of blood urea nitrogen (BUN), serum creatinine (Scr), urine trace albumin (UALB), urine creatinine (UCR) (calculate UACR), cystatin (Cys-C), and ß-microglobulin (ß-MG) were measured by ELISA kits to evaluate renal function. TUNEL assay was performed to observe the apoptosis. qPCR was used to detect the mRNA expression levels of HO-1, NQO1, and SOD in kidney tissue. The protein expressions of Nrf2, HO-1, NQO1, Bax, Bcl-2, and Caspase 3 in the kidney tissue and HK-2 cells were detected by western blot. Meanwhile, HK-2 cells were induced by H2O2 to establish an oxidative stress injury model to verify the protective effect and mechanisms of FTZ. RESULTS: In DM-CHD minipigs, blood lipid profile and FBG were elevated significantly, and the renal function was decreased with the increase of BUN, Scr, UACR, Cys-c, and ß-MG. A large number of inflammatory and apoptotic cells in the kidney were observed accompanied with lower levels of SOD, Bcl-2, Nrf2, HO-1, and NQO1, but high levels of Bax and Cleaved-caspase 3. FTZ alleviated glucose-lipid metabolic disorders and the pathological morphology of the kidney. The renal function was improved and the apoptotic cells were reduced by FTZ administration. FTZ could also enhance the levels of SOD, Nrf2, HO-1, and NQO1 proteins to promote antioxidant effect, down-regulate the expression of Bax and Caspase3, as well as up-regulate the expression of Bcl-2 to inhibit cell apoptosis in the kidney tissue and HK-2 cells. CONCLUSIONS: We concluded that FTZ prevents renal injury of DM-CHD through activating anti-oxidative capacity to reduce apoptosis and inhibiting inflammation, which may be a new candidate for DKD treatment.

16.
Pharmacol Res ; 177: 106124, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-35149188

RESUMO

Cardiac fibrosis is a pathological process of multiple cardiovascular diseases, which may lead to heart failure. Studies have shown that microRNAs (miRNAs) play critical roles in regulating mitophagy and cardiac fibrosis. We found that miR-24-3p expression was significantly downregulated in transverse aortic constriction (TAC) mice and cardiac fibroblasts (CFs) treated with Ang Ⅱ. We also found that, apart from improving cardiac structure and function, forced expression of miR-24-3p not only reduced the levels of collagen and α-SMA but also inhibited proliferation and migration of CFs. Next, our research proved that miR-24-3p suppressed the progression of mitophagy, autophagic flux, and the levels of mitophagy-related proteins in cardiac fibrosis models. Further analysis showed that PHB2 was a direct target of miR-24-3p. Finally, experiments showed that the knockdown of PHB2 reversed Ang Ⅱ-induced fibrosis in CFs. The results of our study suggests that increased expression of miR-24-3p contributes to the reduction of cardiac fibrosis and that it might be targeted therapeutically to alleviate cardiac fibrosis.


Assuntos
MicroRNAs , Proibitinas/metabolismo , Animais , Células Cultivadas , Fibroblastos/metabolismo , Fibrose , Camundongos , Camundongos Endogâmicos C57BL , MicroRNAs/metabolismo , Mitofagia , Miocárdio/metabolismo
17.
Biomed Pharmacother ; 148: 112696, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-35183007

RESUMO

BACKGROUND: Despite the fact that the initial hypertrophic response to ventricular pressure overload is thought to be compensatory, prolonged stress often leads to heart failure. Previous studies have shown that the Fufang-Zhenzhu-Tiaozhi (FTZ) formula is beneficial for the treatment of dyslipidemia and hyperglycemia. However, the effects of FTZ on cardiac hypertrophy remain unclear. OBJECTIVE: The aim of this study is to evaluate the protective effects of FTZ on cardiac hypertrophy and determine the underlying mechanisms. METHODS: TAC was utilized to establish a cardiac hypertrophy animal model, and FTZ was given via gavage for four weeks. Next, echocardiographic measurements were made. The morphology of mouse cardiomyocytes was examined using H&E and WGA staining. In vitro, the neonatal cardiomyocytes were stimulated with angiotensin Ⅱ (Ang Ⅱ). In addition to measuring the size of cardiomyocytes, qRT-PCR and western blotting were conducted to measure cardiac stress markers and pathway. RESULTS: According to our findings, FTZ alleviated cardiac hypertrophy in mice and cell models. Furthermore, expression of miR-214 was down-regulated following FTZ, whereas the effect of FTZ therapy was reversed using miR-214 transfection. Furthermore, the expression of Sirtuin 3 (SIRT3) was decreased in Ang Ⅱ-induced oxidative damage, which was associated with a reduction in SOD-1, GPX1, and HO-1 and an increase in MDA, while SIRT3 expression was restored following FTZ treatment. CONCLUSIONS: Collectively, these findings indicate that FTZ is a protective factor for cardiac hypertrophy due to its regulation of the miR-214-SIRT3 axis, which suggests that FTZ may be a therapeutic target for cardiac hypertrophy.


Assuntos
MicroRNAs , Sirtuína 3 , Angiotensina II/metabolismo , Animais , Cardiomegalia/tratamento farmacológico , Medicamentos de Ervas Chinesas , Camundongos , Camundongos Endogâmicos C57BL , MicroRNAs/metabolismo , Miócitos Cardíacos , Estresse Oxidativo , Transdução de Sinais , Sirtuína 3/genética , Sirtuína 3/metabolismo
18.
J Hepatol ; 76(2): 407-419, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34656650

RESUMO

BACKGROUND & AIMS: Non-alcoholic fatty liver disease (NAFLD) has become the most common chronic liver disease worldwide. The advanced stage of NAFLD, non-alcoholic steatohepatitis (NASH), has been recognized as a leading cause of end-stage liver injury for which there are no FDA-approved therapeutic options. Glutathione S-transferase Mu 2 (GSTM2) is a phase II detoxification enzyme. However, the roles of GSTM2 in NASH have not been elucidated. METHODS: Multiple RNA-seq analyses were used to identify hepatic GSTM2 expression in NASH. In vitro and in vivo gain- or loss-of-function approaches were used to investigate the role and molecular mechanism of GSTM2 in NASH. RESULTS: We identified GSTM2 as a sensitive responder and effective suppressor of NASH progression. GSTM2 was significantly downregulated during NASH progression. Hepatocyte GSTM2 deficiency markedly aggravated insulin resistance, hepatic steatosis, inflammation and fibrosis induced by a high-fat diet and a high-fat/high-cholesterol diet. Mechanistically, GSTM2 sustained MAPK pathway signaling by directly interacting with apoptosis signal-regulating kinase 1 (ASK1). GSTM2 directly bound to the N-terminal region of ASK1 and inhibited ASK1 N-terminal dimerization to subsequently repress ASK1 phosphorylation and the activation of its downstream JNK/p38 signaling pathway under conditions of metabolic dysfunction. CONCLUSIONS: These data demonstrated that hepatocyte GSTM2 is an endogenous suppressor that protects against NASH progression by blocking ASK1 N-terminal dimerization and phosphorylation. Activating GSTM2 holds promise as a therapeutic strategy for NASH. CLINICAL TRIAL NUMBER: IIT-2021-277. LAY SUMMARY: New therapeutic strategies for non-alcoholic steatohepatitis are urgently needed. We identified that the protein GSTM2 exerts a protective effect in response to metabolic stress. Therapies that aim to increase the activity of GSTM2 could hold promise for the treatment of non-alcoholic steatohepatitis.


Assuntos
Glutationa Transferase/farmacologia , MAP Quinase Quinase Quinase 5/antagonistas & inibidores , Hepatopatia Gordurosa não Alcoólica/prevenção & controle , Animais , Biópsia/métodos , Biópsia/estatística & dados numéricos , Modelos Animais de Doenças , Marcação de Genes/métodos , Marcação de Genes/normas , Marcação de Genes/estatística & dados numéricos , Glutationa Transferase/metabolismo , Hepatócitos/metabolismo , Hepatócitos/fisiologia , Fígado/patologia , MAP Quinase Quinase Quinase 5/uso terapêutico , Camundongos , Hepatopatia Gordurosa não Alcoólica/tratamento farmacológico , Análise de Sequência de RNA/métodos , Análise de Sequência de RNA/estatística & dados numéricos
19.
Hepatology ; 76(1): 155-171, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-34717002

RESUMO

BACKGROUND AND AIMS: NAFLD is a key component of metabolic syndrome, ranging from nonalcoholic fatty liver to NASH, and is now becoming the leading cause of cirrhosis and HCC worldwide. However, due to the complex and unclear pathophysiological mechanism, there are no specific approved agents for treating NASH. Breviscapine, a natural flavonoid prescription drug isolated from the traditional Chinese herb Erigeron breviscapus, exhibits a wide range of pharmacological properties, including effects on metabolism. However, the anti-NASH efficacy and mechanisms of breviscapine have not yet been characterized. APPROACH AND RESULTS: We evaluated the effects of breviscapine on the development of hepatic steatosis, inflammation, and fibrosis in vivo and in vitro under metabolic stress. Breviscapine treatment significantly reduced lipid accumulation, inflammatory cell infiltration, liver injury, and fibrosis in mice fed a high-fat diet, a high-fat/high-cholesterol diet, or a methionine- and choline-deficient diet. In addition, breviscapine attenuated lipid accumulation, inflammation, and lipotoxicity in hepatocytes undergoing metabolic stress. RNA-sequencing and multiomics analyses further indicated that the key mechanism linking the anti-NASH effects of breviscapine was inhibition of TGF-ß-activated kinase 1 (TAK1) phosphorylation and the subsequent mitogen-activated protein kinase signaling cascade. Treatment with the TAK1 inhibitor 5Z-7-oxozeaenol abrogated breviscapine-mediated hepatoprotection under metabolic stress. Molecular docking illustrated that breviscapine directly bound to TAK1. CONCLUSION: Breviscapine prevents metabolic stress-induced NASH progression through direct inhibition of TAK1 signaling. Breviscapine might be a therapeutic candidate for the treatment of NASH.


Assuntos
Flavonoides , MAP Quinase Quinase Quinases , Hepatopatia Gordurosa não Alcoólica , Animais , Dieta Hiperlipídica/efeitos adversos , Flavonoides/farmacologia , Inflamação/metabolismo , Metabolismo dos Lipídeos , Fígado/patologia , Cirrose Hepática/complicações , Cirrose Hepática/tratamento farmacológico , Cirrose Hepática/prevenção & controle , MAP Quinase Quinase Quinases/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Simulação de Acoplamento Molecular , Hepatopatia Gordurosa não Alcoólica/tratamento farmacológico , Hepatopatia Gordurosa não Alcoólica/patologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...