Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
PLoS One ; 11(2): e0150085, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-26910759

RESUMO

Non-bone in vivo micro-CT imaging has many potential applications for preclinical evaluation. Specifically, the in vivo quantification of changes in the vascular network and organ morphology in small animals, associated with the emergence and progression of diseases like bone fracture, inflammation and cancer, would be critical to the development and evaluation of new therapies for the same. However, there are few published papers describing the in vivo vascular imaging in small animals, due to technical challenges, such as low image quality and low vessel contrast in surrounding tissues. These studies have primarily focused on lung, cardiovascular and brain imaging. In vivo vascular imaging of mouse hind limbs has not been reported. We have developed an in vivo CT imaging technique to visualize and quantify vasculature and organ structure in disease models, with the goal of improved quality images. With 1-2 minutes scanning by a high speed in vivo micro-CT scanner (Quantum CT), and injection of a highly efficient contrast agent (Exitron nano 12000), vasculature and organ structure were semi-automatically segmented and quantified via image analysis software (Analyze). Vessels of the head and hind limbs, and organs like the heart, liver, kidneys and spleen were visualized and segmented from density maps. In a mouse model of bone metastasis, neoangiogenesis was observed, and associated changes to vessel morphology were computed, along with associated enlargement of the spleen. The in vivo CT image quality, voxel size down to 20 µm, is sufficient to visualize and quantify mouse vascular morphology. With this technique, in vivo vascular monitoring becomes feasible for the preclinical evaluation of small animal disease models.


Assuntos
Angiografia/métodos , Meios de Contraste/farmacologia , Neoplasias Experimentais , Neovascularização Patológica/diagnóstico por imagem , Microtomografia por Raio-X/métodos , Animais , Camundongos , Neoplasias Experimentais/irrigação sanguínea , Neoplasias Experimentais/diagnóstico por imagem , Especificidade de Órgãos
2.
Fibrogenesis Tissue Repair ; 4(1): 5, 2011 Feb 02.
Artigo em Inglês | MEDLINE | ID: mdl-21288331

RESUMO

BACKGROUND: The wounding response relies on tightly regulated crosstalk between recruited fibroblasts and the collagenous extracellular matrix (ECM). Discoidin domain receptor 2 (DDR2) is a tyrosine kinase receptor for fibrillar collagen expressed during pathologic scarring, for example wound healing, arthritis and cancer. We have previously shown that DDR2 phosphorylation drives key wounding responses in skin fibroblasts including proliferation, chemotactic migration and secretion of both metalloproteinases and fibrillar collagen. In this study we compared healing of cutaneous wounds in DDR2+/+ and DDR2-/- mice and analyzed specific fibroblast responses. RESULTS: Cutaneous wound healing was significantly delayed in DDR2-/- mice compared with DDR2+/+ animals. Reduced α-smooth muscle actin (αSMA) expression and matrix metalloproteinase 2 (MMP2) activity in the DDR2-/- wound extracts indicated defective recruitment of skin fibroblasts. DDR2-/- wounds showed decreased tensile strength during healing, which correlated with a significant reduction in collagen content and defective collagen crosslinking. Non-wounded skin in DDR2-/- mice expressed less mRNA of the crosslinking enzymes lysyl oxidase (LOX), lysyl hydroxylase1 (LH1) and matricellular 'secreted protein, acidic and rich in cysteine' (SPARC; also known as osteonectin). Skin fibroblasts isolated from DDR2-/- mice displayed altered mRNA expression of a cluster of collagens, proteoglycans, integrins and MMPs that have been previously correlated with DDR2 expression, and reduced LOX, LH1 and SPARC mRNA levels and proteins. Stable reconstitution of wild-type DDR2 by retroviral infection restored LOX, LH1 and SPARC mRNA and protein levels in DDR2-/- fibroblasts. Contraction of collagen gels was reduced in DDR2-/- fibroblasts, accompanied by significantly reduced phosphorylated SrcY418. Inhibition of either LOX activity by ß-aminoproprionitrile or MMP activity by N-[(2R)-2-(hydroxamido carbonylmethyl)-4-methylpentanoyl]-l-tryptophan methylamide (GM6001) reduced collagen gel contraction by skin fibroblasts after DDR2 induction with soluble collagen type I. CONCLUSIONS: DDR2 contributes to skin fibroblast responses during tissue injury. Defective synthesis of collagen type I, crosslinking molecules and MMP2 predispose DDR2-/- mice to defective dermal wounding.

3.
J Biol Chem ; 277(21): 19206-12, 2002 May 24.
Artigo em Inglês | MEDLINE | ID: mdl-11884411

RESUMO

Discoidin domain receptor 2 (DDR2) is an unusual receptor tyrosine kinase in that its ligand is fibrillar collagen rather than a growth factor-like peptide. We examined signal transduction pathways of DDR2. Here we show that DDR2 is also unusual in that it requires Src activity to be maximally tyrosine-phosphorylated, and that Src activity also promotes association of DDR2 with Shc. The interaction with Shc involves a portion of Shc not previously implicated in interaction with receptor tyrosine kinases. These results identify Src kinase and the adaptor protein Shc as key signaling intermediates in DDR2 signal transduction. Furthermore, Src is required for DDR2-mediated transactivation of the matrix metalloproteinase-2 promoter. The data support a model in which Src and the DDR2 receptor cooperate in a regulated fashion to direct the phosphorylation of both the receptor and its targets.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal , Proteínas Adaptadoras de Transporte Vesicular , Colágeno Tipo I/metabolismo , Proteínas/metabolismo , Receptores Proteína Tirosina Quinases , Receptores Mitogênicos/metabolismo , Quinases da Família src/metabolismo , Animais , Células COS , Linhagem Celular , Receptores com Domínio Discoidina , Metaloproteinase 2 da Matriz/genética , Camundongos , Fosforilação , Mutação Puntual , Regiões Promotoras Genéticas , Ligação Proteica , Ratos , Receptores Mitogênicos/genética , Proteínas Adaptadoras da Sinalização Shc , Transdução de Sinais , Proteína 1 de Transformação que Contém Domínio 2 de Homologia de Src , Ativação Transcricional
4.
J Biol Chem ; 277(5): 3606-13, 2002 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-11723120

RESUMO

Discoidin domain receptor 2 (DDR2) is a tyrosine kinase receptor expressed in mesenchymal tissues, the ligand of which is fibrillar collagen. We have compared DDR2 signaling in skin fibroblasts derived from DDR2(-/-) and DDR2(+/-) mice. Proliferation of DDR2(-/-) fibroblasts was significantly decreased compared with DDR2(+/-) cells. DDR2(-/-) fibroblasts exhibited markedly impaired capacity to migrate through a reconstituted basement membrane (Matrigel) in response to a chemotactic stimulus, which correlated with diminished matrix metalloproteinase-2 (MMP-2) activity by gelatin zymography and diminished MMP-2 transcription of a minimal MMP-2 promoter. In contrast, a lack of DDR2 had no effect on cell motility or alpha-smooth muscle actin or vinculin expression. Additionally, expression of type I collagen was greatly reduced in DDR2(-/-) cells. Stable reconstitution of either wild-type DDR2 or constitutively active chimeric DDR2 in DDR2(-/-) cells by retroviral infection restored cell proliferation, migration through a reconstituted basement membrane (Matrigel), and MMP-2 levels to those of DDR2(+/-) fibroblasts. These data establish a role for DDR2 in critical events during wound repair.


Assuntos
Diferenciação Celular/fisiologia , Movimento Celular/fisiologia , Matriz Extracelular/fisiologia , Fibroblastos/citologia , Metaloproteinase 2 da Matriz/genética , Receptores Mitogênicos/metabolismo , Animais , Adesão Celular/fisiologia , Linhagem Celular , Células Cultivadas , Colágeno Tipo I/biossíntese , Receptores com Domínio Discoidina , Genes Reporter , Cinética , Camundongos , Camundongos Knockout , Fosforilação , Receptores Proteína Tirosina Quinases/deficiência , Receptores Proteína Tirosina Quinases/genética , Receptores Proteína Tirosina Quinases/metabolismo , Receptores Mitogênicos/deficiência , Receptores Mitogênicos/genética , Pele/citologia , Ativação Transcricional
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...