Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
ACS Appl Mater Interfaces ; 15(17): 21549-21561, 2023 May 03.
Artigo em Inglês | MEDLINE | ID: mdl-37083343

RESUMO

Dropwise condensation on superhydrophobic surfaces could potentially enhance heat transfer by droplet spontaneous departure via coalescence-induced jumping. However, an uncontrolled droplet size could lead to a significant reduction of heat transfer by condensation, due to large droplets that resulted in a flooding phenomenon on the surface. Here, we introduced a dropwise condensate comb, which consisted of U-shaped protruding hydrophilic stripes and hierarchical micro-nanostructured superhydrophobic background, for a better control of condensation droplet size and departure processes. The dropwise condensate comb with a wettability-contrast surface structure induced droplet removal by flank contact rather than three-phase line contact. We showed that dropwise condensation in this structure could be controlled by designing the width of the superhydrophobic region and height of the protruding hydrophilic stripes. In comparison with a superhydrophobic surface, the average droplet radius was decreased to 12 µm, and the maximum droplet departure radius was decreased to 189 µm by a dropwise condensate comb with 500 µm width of a superhydrophobic region and 258 µm height of a protruding hydrophilic stripe. By controlling the droplet size and departure on hierarchical micro-nanostructured superhydrophobic surfaces, it was experimentally demonstrated that both the heat transfer coefficient and heat flux could be enhanced significantly. Moreover, the dropwise condensate comb showed a maximum heat transfer coefficient of 379 kW m-2 K-1 at a low subcooling temperature, which was 85% higher than that of a superhydrophobic surface, and it showed 113% improvement of high heat flux or heat transfer coefficient when it was compared with that of the hierarchical micro-nanostructured superhydrophobic surface at a high subcooling temperature of ∼10.6 K. This work could potentially transform the design and fabrication space for high-performance heat transfer devices by spatial control of condensation droplet size and departure processes.

2.
ChemSusChem ; 16(15): e202202395, 2023 Aug 07.
Artigo em Inglês | MEDLINE | ID: mdl-37012670

RESUMO

Deuterium-labeled polyols are one of the most extensive applied chemicals in biochemistry and biophysics. However, the deuteriation still is insufficient, exhibiting a low deuterated ratio and indistinct reaction mechanism. Herein, Ru supported on MnBCD (MnBDC, derived from Mn p-phthalic acid metal-organic framework) as nanocatalyst with an agglomerated sheet-type structure; this allows the possibility of achieving both thermo- and electrocatalytic hydrogen isotope exchange (HIE) reaction. Furthermore, XPS characterization confirmed that the specific structural changes in the electron density of Ru outer layers were modulated through the impregnation and reduction processes. According to the change of outer electronic structure, hydrogen spillover and electron-rich flow promote the reaction of the catalyst in thermo- and electrocatalytic systems, respectively. In addition, the results indicate that a high deuterated ratio of 97 % can be obtained, hence the catalytic technology has enormous potential for the synthesis of a broad variety of deuterium-labeled compounds.

3.
Molecules ; 25(4)2020 Feb 18.
Artigo em Inglês | MEDLINE | ID: mdl-32085603

RESUMO

The regioselective mono-bromination of phenols has been successfully developed with KBr and ZnAl-BrO3--layered double hydroxides (abbreviated as ZnAl-BrO3--LDHs) as brominating reagents. The para site is much favorable and the ortho site takes the priority if para site is occupied. This reaction featured with excellent regioselectivity, cheap brominating reagents, mild reaction condition, high atom economy, broad substrate scope, and provided an efficient method to synthesize bromophenols.


Assuntos
Alumínio/química , Brometos/química , Halogenação , Hidróxidos/química , Fenóis/química , Compostos de Potássio/química , Compostos de Zinco/química , Estereoisomerismo
4.
Analyst ; 141(20): 5886-5892, 2016 Oct 21.
Artigo em Inglês | MEDLINE | ID: mdl-27489889

RESUMO

In this work, we have fabricated a new dual-emission quantum dot (QD) nanohybrid for fluorescence ratiometric determination of cadmium ions (Cd2+) in water samples, where the "turn-on" model and "ion-imprinting" technique were incorporated simultaneously. The nanohybrid probe was composed of green-emitting CdSe QDs covalently linked onto the surface of silica nanoparticles embedded with red-emitting CdTe QDs. The chemical etching of ethylene diamine tetraacetic acid (EDTA) at the surface produced specific Cd2+ recognition sites and quenched the green fluorescence of outer CdSe QDs. Upon exposure to different amounts of Cd2+, the green fluorescence was gradually restored, whereas the inner red fluorescence remained constant. As a consequence, an obviously distinguishable fluorescence color variation (from red to green) of the probe solution was observed. Under the optimized conditions, the developed ratiometric sensor displayed a linear response range from 0.1 to 9 µM with a detection limit of 25 nM (S/N = 3) for Cd2+, which could offer an alternative sensing approach for the highly sensitive and selective detection of heavy metal ions.

5.
J Colloid Interface Sci ; 316(2): 284-91, 2007 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-17706237

RESUMO

Adsorption of a weak acid dye, methyl orange (MO) by calcined layered double hydroxides (LDO) with Zn/Al molar ratio of 3:1 was investigated. In the light of so called "memory effect," LDO was found to recover their original layered structure in the presence of appropriate anions, after adsorption part of MO(-) and CO(2-)(3) (come from air) intercalated into the interlayer of LDH which had been supported by XRD and ICP. The results of adsorption experiments indicate that the maximum capacity of MO at equilibrium (Q(e)) and percentage of adsorption (eta%) with a fixed adsorbent dose of 0.5 g L(-1) were found to be 181.9 mg g(-1) and 90.95%, respectively, when MO concentration, temperature, pH and equilibrium time were 100 mg L(-1), 298 K, 6.0 and 120 min, respectively. The isotherms showed that the adsorption of MO by Zn/Al-LDO was both consistent with Langmuir and Freundlich equations. The adsorption process was spontaneous and endothermic in nature and followed pseudo-second-order kinetic model. The calculated value of E(a) was found to be 77.1 kJ mol(-1), which suggests that the process of adsorption of methyl orange is controlled by the rate of reaction rather than diffusion. The possible mechanism for MO adsorption has also been presumed. In addition, the competitive anions on adsorption and the regeneration of Zn/Al-LDO have also been investigated.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA